
DISTRIBUTED OBJECT SYSTEM
ENGINEERING FOR TERMINAL

AERODROME FORECAST VALIDATION
AND METRICS PROCESSING

THESIS

James S. Douglas, Captain, USAF

AFIT/GCS/ENG/00M-07

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AFIT/GCS/ ENG/ OOM-07

DISTRIBUTED OBJECT SYSTEM ENGINEERING FOR

TERMINAL AERODROME FORECAST VALIDATION AND

METRICS PROCESSING

THESIS

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

In Partial Fulfillment of the Requirements for the

Degree of Master of Science in Computer Systems

James S. Douglas, B.S.

Captain, USAF

March, 2000

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

20000815 194

The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the United States Air Force, Department of Defense,
or the U. S. Government.

AFIT/GCS/ENG/00M-07

DISTRIBUTED OBJECT SYSTEM ENGINEERING FOR

TERMINAL AERODROME FORECAST VALIDATION AND

METRICS PROCESSING

THESIS

James S. Douglas, B.S.

Captain, USAF

Approved:

<*^
Gary gy Lamont,

SD

Date

Thomas C Hartrum, PhD

3 Tn^Jx 0Q

Date

Major Mid ael L. Talbe% PhD
V

Date

Acknowledgements

I thank my wife Lynn and our children Joshua, Jonathan, and Melissa for

all their support and understanding during the past 18 months - without it, the

days would have been much longer and less fulfilling. Although I always tried

to be there for the kid's basketball, baseball, soccer, scouting, and homework (just

to name a few), it was Lynn who held the family together over the past 18

months and provided me a wonderful learning atmosphere - thank you.

To Dr. Gary Lamont for his guidance on distributed system development

and patience in steering me through the thesis and scientific experimentation

process. My goals when I chose to pursue a graduate program in computer sci-

ence were never about making the highest grade, they were always about being

able to solve problems through individual effort and research. Although I rarely

(if ever) asked a professor for advice; opting to make, correct, and pay for my

mistakes along the way, Dr. Lamont always seemed to provide very timely in-

sight into issues that seemed puzzling to me at the time. I thank him for helping

me to think "out of the box," and acknowledge that his influence will greatly im-

pact my future work in the field.

To Dr. Tom Hartrum and Major Mike Talbert for their instructive feed-

back, constructive criticism, and sense of humor over the last 18 months. Even

though I may not have absorbed everything you folks taught me, I always en-

joyed your perspectives, whether they concerned object-oriented software engi-

IV

neering or relational databases — I greatly enjoyed watching you folks teach. I

think it finally came together for me here in the end.

Last, but certainly not least — I'd like to thank Captain Darryl N. Leon.

Darryl is a Florida State University alumni (I won't hold it against him) and an

avid sports fan. Our spirited discussions on college and professional sports were

as important to me as any class I was taking at the time. Darryl is also an experi-

enced Air Force weather guy. Besides the spirited sports discussions, his

weather expertise proved instrumental in helping me understand terminal fore-

casts and the problem I was really trying to solve - thanks for the insight.

James S. Douglas

v

Table of Contents

Page
ACKNOWLEDGEMENTS IV

LIST OF FIGURES IX

LIST OF TABLES XI

ABSTRACT XII

I. INTRODUCTION 13

1.1 APPLICATION DOMAIN 15
1.2 PROBLEM DISCUSSION 16

1.2.1 Current Forecast Generation [46] 17
1.2.2 Architectural Discussion [1] 18

1.3 RESEARCH GOALS 19
1.4 SPECIFIC OBJECTIVES 20
1.5 RESEARCH SIGNIFICANCE 21
1.6 ASSUMPTIONS, SCOPE, AND CONSTRAINTS 22
1.7 SUMMARY 23

II. DISTRIBUTED OBJECT SYSTEMS 24

2.1 INTRODUCTION 24
2.2 THE DISTRIBUTED OBJECT ENVIRONMENT 24
2.3 DISTRIBUTED OBJECT PARADIGMS 27

2.3.1 Common Object Request Broker Architecture (CORBA) 28
2.3.2 Distributed Component Object Model (DCOM) 32

2.4 DISTRIBUTED OBJECT SECURITY 34
2.4.1 Security Issues35
2.4.2 Kerberos Authentication Service 36

2.5 DISTRIBUTED OBJECT STORAGE 39
2.5.1 Architectures 40
2.5.2 Transactions 41
2.5.3 Serializability 43
2.5.4 Recovery Protocols 44
2.5.5 Object-Relational Data Mapping 47

2.6 SUMMARY 49

III. DISTRIBUTED SYSTEM DESIGN 50

3.1 INTRODUCTION 50
3.2 MOTIVATION 51
3.3 PROPOSED FORECAST GENERATION 52
3.4 SOFTWARE REQUIREMENTS SPECIFICATION 55

3.4.1 Business Description 55
3.4.1.1 Overall Description 56
3.4.1.2 Functional Description 57
3.4.1.3 TAF Validation Issues 59
3.4.1.4 TAF Publication Issues 59
3.4.1.5 Measuring TAF Data Quality and Accuracy 60

3.4.2 Information System Model. 64

VI

Page
3.4.2.1 TFMS Schema 65
3.4.2.2 Information Flow 67
3.4.2.3 Role of TFMS Agents 70
3.4.2.4 Transaction Model 72

3.4.2.4.1 Task Decomposition 73
3.4.2.4.2 Object-Level Behavior 75

3.4.2.5 Granularity 77
3.5 DISTRIBUTED OBJECT SYSTEM DESIGN 79

3.5.7 System Partitioning 80
3.5.2 System Module Design 82

3.5.2.1 Thread Architecture 83
3.5.2.2 Data Architecture 83
3.5.2.3 Client Module 84
3.5.2.4 Delegation Module 86
3.5.2.5 Validation Module 87
3.5.2.6 Publication Module 90
3.5.2.7 Classification Module 91
3.5.2.8 Data Module 92

3.5.3 System Performance, Evolution, and Reliability Considerations 96
3.6 SUMMARY 97

IV. DISTRIBUTED SYSTEM PROTOTYPING 98

4.1 INTRODUCTION 98
4.2 PERFORMANCE BENCHMARKS 98

4.2.1 Basic Performance Metrics 99
4.2.1.1 Execution Time 100
4.2.1.2 Floating-Point Operations 100
4.2.1.3 Combinations of Basic Metrics 101

4.2.2 CORBA Performance Metrics 101
4.2.2.1 Call Latency 102
4.2.2.2 Marshaling Rate 104
4.2.2.3 Server-Side Performance 104

4.3 EXPERIMENTAL DESIGN 107
4.3.1 Factors 108
4.3.2 Mitigation of Factors 109
4.3.3 Client/Server Measurement Model 110
4.3.4 Parameters Ill
4.3.5 Measurements 113
4.3.6 Measurement Confidence Level 113

A A SUMMARY 114

V. DISTRIBUTED SYSTEM IMPLEMENTATION 115

5.1 INTRODUCTION 115
5.2 SOFTWARE DEVELOPMENT ENVIRONMENT 115

5.2.1 MICO 116
5.2.2 Microsoft Visual Studio 6.0 - Enterprise Edition 116

5.3 DEPLOYMENT 117
5.3.1 N-Tier Topologies 117
5.3.2 Experimental Environment 123
5.3.3 Component Implementation 123

5.3.3.1 CORBA Name Server 123
5.3.3.2 Test Generator 124
5.3.3.3 Business Server 125
5.3.3.4 Collection Server 125

5.3.4 Component Deployment 125

Vll

Page
5.4 EXPERIMENTS 126

5.4.1 ORB Benchmark Transactions 128
5.4.1.1 Call Latency : 128
5.4.1.2 Marshaling Rate 130
5.4.1.3 Server-Side Performance 130

5.4.1.3.1 Threaded 130
5.4.1.3.2 Event Loop 132

5.4.1.4 Name Server Performance 133
5.4.2 Publication Transaction 133
5.4.3 Validation Transaction 138
5.4.4 Submit Transaction 139

5.5 SUMMARY 142

VI. COLLECTED DATA ANALYSIS 143

6.1 INTRODUCTION 143
6.2 ORB EXPERIMENTS 143
6.3 PUBLICATION EXPERIMENTS 149
6.4 VALIDATION EXPERIMENTS 153
6.5 INTEGRATION AND SYSTEM EXPERIMENTS 157
6.6 SUMMARY 159

VII. CONCLUSION 160

7.1 RESEARCH SIGNIFICANCE REVISITED 160
7.2 CRITICAL RESEARCH FACTORS 162
7.3 EFFICIENCY AND EFFECTIVENESS DISCUSSION 163

7.3.1 Impact of System Prototyping 163
7.3.2 Effectiveness of Methodology 166

7.4 FUTURE RESEARCH AND RECOMMENDATIONS 168

APPENDIX A: OBJECT MANAGEMENT ARCHITECTURE (OMA) 170

A.1 THE OMG OBJECT MODEL 172
A. 1.1 General Concepts and Terminology 172
A. 1.2 OMG Interface Definition Language 173

A.2 THE OMG REFERENCE MODEL 174
A.2.1 Object Request Broker (ORB) 175
A.2.2 General Client/Sever Flow. 177
A.2.3 Application Development 178
A.2.4 Object Services 178

APPENDIX B: CORBAIDL 180

ACRONYMS 183

GLOSSARY 187

BIBLIOGRAPHY 190

VITA 195

Vlll

List of Figures

Page
FIGURE 1: A TYPICAL N-TIER TOPOLOGY 14
FIGURE 2: CURRENT TAF GENERATION [46] 18
FIGURE 3: A DISTRIBUTED OBJECT SYSTEM ENVIRONMENT 25
FIGURE 4: CORBA SPECIFICATION 30
FIGURE 5: DCOM OVERALL ARCHITECTURE [17] 33
FIGURE 6: KERBEROS AUTHENTICATION 38
FIGURE 7: PARALLEL AND DISTRIBUTED DATABASE ARCHITECTURES 40
FIGURE 8: TWO-PHASE COMMIT DIAGRAM 45
FIGURE 9: OBJECT CACHE [41] 48
FIGURE 10: OBJECT-TUPLE MAPPING [41] 49
FIGURE 11: ORGANIZATIONAL ARCHITECTURE 52
FIGURE 12: PROPOSED ARCHITECTURE 53
FIGURE 13: PROPOSED N-TIER ARCHITECTURE 54
FIGURE 14: TFMS STATIC DATA QUALITY 60
FIGURE 15: TFMS VALIDATION AND MEASUREMENT MODEL 62
FIGURE 16: TFMS OBJECT-RELATIONSHIP DIAGRAM 66
FIGURE 17: TFMS CONTEXT-LEVEL DATA FLOW DIAGRAM 68
FIGURE 18: TFMS LEVEL ONE DATA FLOW DIAGRAM 69
FIGURE 19: TFMS PROCESS FORECAST DATA FLOW DIAGRAM 69
FIGURE 20: TFMS PROCESS OBSERVATION DATA FLOW DIAGRAM 70
FIGURE 21: TFMS TRANSACTION MODEL 73
FIGURE 22: WEATHER ANALYST MANAGEMENT TRANSACTION MODEL 74
FIGURE 23: TFMS SUBMIT FORECAST TRANSACTION 75
FIGURE 24: PUBLICATION AGENT BEHAVIOR 76
FIGURE 25: TFMS MODULAR VIEW 81
FIGURE 26: TFMS CLIENT MODULE 85
FIGURE 27: TFMS DELEGATION MODULE 86
FIGURE 28: TFMS VALIDATION MODULE 88
FIGURE 29: TFMS PUBLICATION MODULE 91
FIGURE 30: TFMS CLASSIFICATION MODULE 92
FIGURE 31: TFMS DATA MODULE 94
FIGURE 32: CLIENT/SERVER MEASUREMENT MODEL [49] 111
FIGURE 33 :N-TIER LOGICAL MODEL 117
FIGURE 34: TWO-TIER THICK CLIENT 118
FIGURE 35: TWO-TIER THICK SERVER 119
FIGURE 36: THREE-TIER THICK CLIENT 120
FIGURE 37: THREE-TIER THIN CLIENT 121
FIGURE 38: N-TIER COMPONENT MODEL 122
FIGURE 39: RESOLVING TFMS COMPONENT NAMES 124
FIGURE 40: TFMS DEPLOYMENT DIAGRAM 126
FIGURE 41: AVERAGE CLASS 127
FIGURE 42: CALL, MARSHALING RATE, AND SERVER PERFORMANCE TRANSACTIONS 128
FIGURE 43: THREAD POOL CLASS 131
FIGURE 44: CANONICAL PUSH MODEL 134
FIGURE 45: PRIMARY COPY ALGORITHM 135
FIGURE 46: PIPELINED PUBLICATION 135
FIGURE 47: PUBLICATION TRANSACTIONS 137
FIGURE 48: VALIDATION TRANSACTION 138
FIGURE 49: SUBMIT TRANSACTION 141

IX

Page
FIGURE 50: REMOTE AND LOCAL PROCEDURE CALL LATENCY 144
FIGURE 51: REMOTE AND LOCAL PROCEDURE CALL RATES 144
FIGURE 52: MICO ORB MARSHALING LATENCY 145
FIGURE 53: MICO ORB MARSHALING RATES 146
FIGURE 54: SERVER RESPONSE TIME COMPARISON - 5 CLIENTS 147
FIGURE 55: SERVER THROUGHPUT COMPARISON-5 CLIENTS 148
FIGURE 56: MICO NAME SERVER PERFORMANCE 149
FIGURE 57: EFFECT OF MESSAGE REDUCTION 150
FIGURE 58: PRIMARY COPY BULK DATA TRANSFERS- 1,10,100 FORECASTS 151
FIGURE59: MICO EVENT SERVICE BULK DATA TRANSFERS- 1,10,100 FORECASTS 151
FIGURE 60: PRIMARY COPY BULK DATA TRANSFERS- 1000 FORECASTS 152
FIGURE 61: MICO EVENT SERVICE BULK DATA TRANSFERS-1000 FORECASTS 152
FIGURE 62: VALIDATION DISTRIBUTION- 1,10,100 FORECASTS 154
FIGURE 63: VALIDATION EFFICIENCY- 1,10,100 FORECASTS 155
FIGURE 64: VALIDATION DISTRIBUTION- 1000 FORECASTS 155
FIGURE 65: VALIDATION EFFICIENCY- 1000 FORECASTS 156
FIGURE 66: SUBMIT TRANSACTION - 1,10,100 FORECASTS 158
FIGURE 67: SUBMIT TRANSACTION - 1000 FORECASTS 158
FIGURE 68: OMA [26] 171
FIGURE 69: OMA LEGAL VALUES [26] 174
FIGURE 70: CORBA SPECIFICATION 176

List of Tables

Page
TABLE 1: TWO-BY-TWO FORECAST VALIDATION MATRIX 63
TABLE 2: MATRIX ELEMENT DEFINITIONS 64
TABLE 3: FACTORS AFFECTING EXECUTION TIME 100
TABLE 4: SOME FLOP COUNTING RULES 101
TABLE 5: ORB MULTITHREADING ARCHITECTURE SUMMARY [5 6] 106
TABLE 6: REMOTE OPERATION COSTS 111
TABLE 7: EXPERIMENT PARAMETERS 112
TABLE 8: WORKLOAD EFFICIENCIES 148

XI

AFIT/ GCS/ ENG/ OOM-07

Abstract

Distributed object systems are a very complex intertwining of heterogene-

ous hardware, software, and operating systems coupled with communication

networks of varying protocols and capacities. Distributed components offer im-

proved performance through parallel processing, improved expansion and scal-

ability opportunities through modularity, improved availability through replica-

tion, and improved resource sharing and interoperability through interconnec-

tion. This research provides a distributed system design methodology to vali-

date terminal forecasts and gather metrics for the Air Force Weather Agency.

Proven principles such as component reuse and architectural development are

applied through the use of parameterized types and design patterns. A cli-

ent/server measurement model is developed to show the impact of design deci-

sions on computer resource utilization, system scalability, system performance,

ease of implementation, and system evolution. An experimental Common Object

Request Broker Architecture (CORBA) application is implemented to quantify

the approach's effectiveness toward selecting an appropriate CORBA implemen-

tation and deploying the application in a distributed environment. While this

research specifically uses CORBA for system development, the methodology

presented is easily mapped onto any client/server architecture.

Xll

DISTRIBUTED OBJECT SYSTEM ENGINEERING FOR

TERMINAL AERODROME FORECAST VALIDATION AND

METRICS PROCESSING

I. Introduction

Software collaborating across machine and network boundaries to create

client/server solutions is the central concept behind distributed object systems

[8]. In distributed object systems, objects are typically divided between three or

more tiers: a user interface layer, at least one business layer1 that executes appli-

cation business logic; and one or more data layers that provide storage and re-

trieval services for user data. Figure 1 shows a typical topology consisting of

four layers: 1) system interface layer, 2) business layer, and 3) a data layer further

subdivided into two distinct layers: a data object layer and data storage layer.

Because of this organization, distributed object systems are also referred to as N-

tier models. The terms distributed systems, distributed objects, component-based sys-

tems, and N-tier systems are interchangeable in this discussion.

Distributed object system technology provides several advantages over

monolithic applications. Large component-based applications may be developed

in small steps, with new system functionality added as a normal course of evolu-

tion. Treating distributed components as binary black boxes, instead of focusing

on source code, greatly enhances component autonomy and reuse [13]. Distrib-

1 Business layer refers to the software rules and logic required to perform application processing requirements.

13

uted components also offer improved performance through parallel processing,

improved expansion and scalability opportunities through modularity, im-

proved availability through replication, and improved resource sharing and in-

teroperability through interconnection [17 and 57].

Business Layer
System Interface j Application Logic

l
^

3
ty

Data Layer
Data Objects

ty

Data Layer
Data Storage

Figure 1: A Typical N-Tier Topology

This investigation relates to open system development in large heteroge-

neous environments. In general, this effort addresses distributed object system

development using the Common Object Request Broker Architecture (CORBA)

[21 and 58]. Specifically, this effort addresses distributed object system devel-

opment as applied to the Air Force Weather Agency (AFWA) application domain

and concentrates its efforts on Terminal Aerodrome Forecast (TAF) validation,

publication, and metrics processing problems [1 and 59]. Issues such as network

and resource utilization, system scalability, system performance, ease of imple-

mentation, and system evolution are discussed in great detail.

14

This chapter provides a background on the core problem this research

addresses: Designing an open, distributed system that validates TAF informa-

tion, provides validated TAF information to AFWA aviation customers, and

processes TAF accuracy metrics with no manual intervention. This chapter also

addresses specific research objectives; the significance and impact anticipated

from conducting this type of research; applicable assumptions, research scope

and constraints as they relate to the problem domain; and the approach and or-

ganization applied to this particular problem.

1.1 Application Domain

AFWA currently uses a manpower-intensive process to produce TAF ac-

curacy metrics. The current process begins when a weather forecaster submits a

TAF for distribution into the system. The TAF is examined for errors at AFWA.

TAF accuracy is manually tracked on hand-written forms, then these forms are

transcribed into a database. On a regular basis, this data is collected at the com-

mand level for report-generation. Besides the apparent process inefficiencies

from duplicate data entry, there are two other inherent problems. Although a

given metric is pre-defined, forecasters can track only very specific and simple

metrics due to current system limitations. TAF validation, publication, and met-

ric reporting facilities are not integrated in the current system. The terms TAF,

terminal forecast, and forecast axe interchangeable in this discussion.

15

AFWA/XP is currently tasked with the responsibility for enabling auto-

mated metric facilities and is therefore sponsoring research into methods that

would achieve solutions to these problems. The Electronic Systems Center, Air

Force Weather Systems (ESC/ACW) drafted a System Requirements Document

(SRD) 2 to help AFW achieve business solutions to a wide array of information

system and data processing problems [1). The SRD outlines the specific hard-

ware, software, and interoperability standards that ESC/ACW believes will

evolve current AFW information systems toward enabling technologies like

CORBA, the distributed object platform addressed and implemented in this ef-

fort.

1.2 Problem Discussion

A major reason for the inefficient TAF process is current forecast entry

computer systems cannot communicate directly with backend systems used to

store and track observation trends for TAF metrics collection. Therefore, a glob-

ally integrated open architecture should be at the heart of the AFW reengineering

effort [1]. For users to have confidence in the collected metrics though, the issue

of forecast confidence using data validation techniques must also be addressed.

Currently, no automated front-end quality control (QC) is conducted on any AFW

weather product. The Automated Weather Distribution System (AWDS), which

currently produces weather reports at the Weather Flight (WF), has no QC capa-

2 The ESC/AFW Systems Requirement Document is a living document outlining AFW information system evolution.

16

bility. This means that forecasts with typographical errors are submitted into the

global network.

TAF errors are currently trapped at AFWA, so every TAF (correct or in-

correct) is transmitted to AFWA for validation. A problem with this type of back-

end QC develops when AFWA has to process many errors, usually during

weather events when forecasters are extremely busy. During these time periods,

AFWA rejects a higher number of forecasts and these rejected forecasts are not

included in TAF accuracy metrics. This leads to the TAF accuracy metric report-

ing better-than-actual results for the time period with high rejection rates. For

automated metric collection to become feasible, front-end forecast validation be-

comes a critical component in the overall distributed system design.

The distributed object system must integrate QC and provide validation

facilities for TAF submissions, alerting the weather observer about data discrep-

ancies before TAF transmission by comparing the submitted TAF to site observa-

tion trend data. The distributed object system must also provide collection facili-

ties to report TAF/observation format and accuracy metrics on submitted

weather data. This research addresses the issues of data validation and collec-

tion as they apply to the TFMS, and distributed systems in general.

1.2.1 Current Forecast Generation [46]

Figure 2 presents a high-level view of the TAF generation process. When

a forecaster produces a TAF, typically another person checks the TAF for errors.

17

No automatic QC is performed. When the forecaster sends the TAF, the local da-

tabase is updated. Typically, forecasts and observations are stored for 24 hours.

The original idea was to store the forecast for validation. In practice, forecasts

are rarely re-examined unless errors are reported [46].

Weather Flight AFWA

WFTAF
(AWDS)

T

Local
Database

(24 Houis)

QC Report

Distribution

~1
Rejected
Reports

(Format Errors)

Worldwide
Weather Network

Other

Feedback

Figure 2: Current TAF generation [46]

As shown in Figure 2, errors are currently trapped at AFWA. If errors are

detected, the offending TAF is rejected. Once the TAF is processed by AFWA, a

copy is returned to the WF, and stored for future reference.

1.2.2 Architectural Discussion [1]

Currently, AFW is undergoing a comprehensive system restructuring.

Under the new design, forecast responsibility shifts from an individual WF to an

Operational Weather Squadron (OWS) servicing a particular geographic region.

Because forecast responsibility is now an OWS function, TAF data is entered into

the distributed system at an OWS. The OWS originates the processing and stor-

18

age of local weather model and forecast data, serving as regional weather proc-

essing centers. The OWS also has the capability to initiate transactions and other

coordination activities with AFWA and another OWS. OWS database systems

have the capability to perform both high-speed loading of data sent from AFWA,

and immediate update of individual data items sent via a DBMS synchronizer or

replication facility.

AFWA basically serves a data warehouse function in the system. AFWA

systems have the capability to transmit, in near real-time, new observation data

to an OWS, and conversely, an OWS can transfer new observation data to

AFWA. Network connectivity within the AFWA, OWS, Weather Flight (WF),

and Detachment levels are typically LAN-grade Ethernet topologies while long-

haul connectivity between these levels is Tl-grade (1.544Mbps) or T3-grade

(45Mbps) X.25 packet switching topologies.

1.3 Research Goals

First, this effort unifies traditional software engineering techniques, e.g.

structured and object-oriented, to effectively develop a suitable design method-

ology for large-scale distributed software systems [4, 5, 6, 16, and 17]. Second,

principles such as component reuse and architectural development through the

use of design patterns are thoroughly investigated and applied where appropri-

ate [13 and 14]. Third, this research builds upon previous AFIT efforts in distrib-

uted object computing [2]. Finally, this effort provides AFW with a thoroughly

19

researched document describing 1) a methodology to design an evolutionary dis-

tributed system, 2) an experimental CORBA application that addresses TAF vali-

dation and publication distributed issues, and 3) a methodology to select an ap-

propriate CORBA implementation by using performance benchmarks.

1.4 Specific Objectives

The principal goal of this investigation is providing AFW an appropriate

distributed system design in terms of cost/performance for the given environ-

ment in which the system must operate and for the given problem (§1.2 Problem

Discussion, §1.3 Research Goals). Specifically, the characteristics of and the con-

siderations for adopting a component-based architecture within an N-tier dis-

tributed system environment are addressed. Specific objectives (research mile-

stones) to achieve this principal goal:

1. Investigate distributed object systems - principles, benefits, and limitations.

2. Investigate distributed data systems — architectures, protocols, and transac-

tions. Determine design trade-offs.

3. Investigate CORBA application development.

4. Determine forecast validation and metric processing data, algorithm, and dis-

tributed characteristics.

5. Determine a suitable system concept model by analyzing the TAF problem

requirements.

20

6. Develop a design methodology for the TFMS based on the requirements de-

termined in step 5.

7. Using the methodology developed in step six, design a component-based dis-

tributed environment for the problem evaluated in step five.

8. Design CORBA performance benchmarks and experiments to test the envi-

ronment developed in step seven.

9. Implement the environment and run experiments.

10. Evaluate using the designed measurement criteria from step eight.

1.5 Research Significance

This investigation provides a design methodology for developing large,

heterogeneous distributed object systems. While this discussion specifically ad-

dresses CORBA system development, the methodology is easily mapped onto

any distributed architecture, e.g. DCOM [18]. Software validation issues are ad-

dressed during system design, contributing to overall design correctness. Along

with providing a sound distributed system development methodology, this re-

search also furthers AFIT's parallel and distributed object system research by

addressing CORBA system development, experimentation, and performance

benchmarking.

21

1.6 Assumptions, Scope, and Constraints

As pointed out previously, the SRD is a living document designed to help

AFW achieve business solutions to a wide array of information system and data

processing problems. This effort focuses solely on investigating AFW TAF vali-

dation, distribution, and metrics processing in an open, distributed environment.

The ESC/ACW baseline architecture is a constraint for forecast validation and

metrics processing design.

An essential AFW requirement is to use technologies that permit incre-

mental system evolution without system-wide consequences — in other words,

AFW requires a scalable architecture. The AFW architecture uses component-

based and N-tier client/server technologies to achieve the desired enterprise

scalability. Accordingly, the AFW system will be implemented as a set of

CORBA components that interoperate through shared interfaces. The AFW archi-

tecture is an integration of both general purpose and TAF problem-specific com-

ponents and needs to also support various legacy databases during the evolution

to an open, component-based architecture. The SRD also specifies that hardware

installations are satisfied with commercial off-the-shelf (COTS) system compo-

nents. Most of the systems that ESC develops fall into this category. Software

installations are hosted by a UNIX or NT platform.

22

1.7 Summary

This chapter provides a general description of the problem being investi-

gated by this research effort. Research goals, objectives, significance, and impact

are also discussed in great detail. Assumptions and constraints are outlined as

they apply to this particular problem.

The rest of the report is organized as follows: Chapter two provides back-

ground discussions on technical subjects such as CORBA and distributed data-

base systems. Chapters three through five addresses design methodology,

measurement methodology, and implementation for an experimental Terminal

Forecast Management System (TFMS). The TFMS is a prototype CORBA appli-

cation developed throughout this investigation to collect data on distributed de-

sign issues; i.e. the TFMS is not a production-quality software system. Chapters

six and seven concern gathering experimental data, analyzing experimental data,

and drawing appropriate conclusions based on these empirical experimental re-

sults.

23

II. Distributed Object Systems

If we knew what it was we were doing, it would not be called research, would it? — Al-
bert Einstein

2.1 Introduction

This chapter discusses the theoretical background material applicable to-

ward understanding the issues and complexities involved with distributed object

and database systems. The typical distributed object environment is introduced

to show some of the issues these systems must address and overcome when het-

erogeneous computer systems must communicate. Distributed object para-

digms, distributed database systems, and distributed object management and

performance issues are then presented and discussed.

2.2 The Distributed Object Environment

Distributed object system environments are a very complex intertwining

of heterogeneous hardware, software, and operating system platforms coupled

with communication networks of varying protocols and capacities. Figure 3

shows an architecture that distributed system engineers would typically encoun-

ter when developing distributed object applications.

24

SunOS - SPARC
Windows NT -ALPHA

Windows NT • Pentium
OSß - PowerPC

Gateway

ni
k:

L-; 100Mbps - Ethernet

SunOS- SPARC
Windows NT-ALPHA rd1-

Windows NT - Pentium
OS/2-PowerPC [

Figure 3: A Distributed Object System Environment

As shown in Figure 3, a client can operate using a number of different ma-

chine architectures, e.g. Pentium or SPARC, while running completely different

operating systems, e.g. Windows NT or SunOS. Servers operate using heteroge-

neous hardware and software as well, but usually contain more powerful or

symmetrical processing capabilities coupled with increased disk and memory

capacities to handle many client requests in a completely decoupled, shared-

nothing architecture (§2.5.1 Architectures). Different hardware platforms pos-

sess different instruction set architectures (ISA) with either little endian or big

endian byte ordering formats; e.g. Intel uses little endian while SPARC uses big

endian [12 and 55]. To shield the application developer from these portability

issues, distributed application development environments provide tools such as

Interface Definition Language (IDL) compilers to generate the necessary code for

parameter marshaling and demarshaling [34]. Different operating system plat-

forms possess different thread models, user interfaces (Text/GUI), and system

25

call interfaces (Win32/POSIX) that present many issues for porting distributed

applications from one platform to another [21 and 50].

A heterogeneous communications network of LANs, MANs, and WANs

(Ethernet, FDDI, ATM, and Tl) connects clients and servers. The network com-

munications protocols used may be based on any of the WAN or LAN protocol

families such as TCP/IP, IPX/SPX (Novell), and X.25. All these protocol families

provide end-to-end communication, but they also possess different characteris-

tics that complicate software interoperability [60]. Network characteristics will

greatly affect the communication time in the distributed object system. On the

LAN side, network device (hubs/switches) characteristics such as shared or

switched bandwidth greatly affect communication time. On the WAN side, net-

work bandwidth (100Mbps LAN versus 1.54Mbps WAN), communication la-

tency, delays caused by buffering interconnection device mismatches, e.g. gate-

way connections from high-speed LANs to the WAN, and fragmenta-

tion/reassembly operations between different protocol families all greatly affect

distributed application performance [10 and 11].

With all of these complexities, distributed object systems attempt to ad-

dress the following issues:

1. Location Transparency: The client does not know what server hosts a particu-

lar target object. The server/object is free to move to any location [21] „

26

2. Language Independence: The client does not care what implementation lan-

guage the server uses. The language can change without affecting clients.

3. Implementation Independence: The client treats the target object as a black

box, i.e. the client possesses no knowledge of the target object's implementa-

tion. In distributed object software engineering, it's absolutely critical to pro-

gram to an interface, not an implementation [12].

4. Architecture Independence: Client is unaware of the server's underlying

hardware architecture or ISA.

5. Operating System Independence: Client is unaware of the server's operating

system, use of threads or event loops.

6. Communication Independence: Client is unaware of the transport and proto-

cols used for method invocation. ORBs transparently connect clients to serv-

ers (§2.3.1 Common Object Request Broker Architecture (CORBA)).

2.3 Distributed Object Paradigms

Distributed object system architectures are a development evolution

rooted from previous forms of software development methodologies: modular,

functional, client/server, and most notably — object-oriented. In a pure object-

oriented approach, reuse and inheritance is restricted to the source code level. If

a developer changes a class definition, she would have to change and recompile

the entire application. The idea behind components is to promote the binary re-

use of software. In a distributed object system, the component is the unit of pack-

27

aging, distribution, maintenance, and development [17]. The component acts as

a service provider, responding to messages sent to its published interface. Inter-

face implementations are hidden from clients, so components may change inter-

nally, provided that their interface definition is maintained.

Since components are standalone objects that can plug-and-play across

network, application, and language boundaries, they also provide fine, medium,

and course grain parallelism capabilities in the distributed architecture. By sim-

ply migrating or replicating components or objects to appropriate network

nodes, we provide performance, fault tolerance, and load-balancing capabilities

that didn't previously exist. The goal of component-based development is to

provide software users and developers the same level of application interopera-

bility that is currently available to users and developers of electronic parts such

as integrated circuits [8]. In this section, the two leading distributed object sys-

tems are explored: the Common Object Request Broker Architecture (CORBA)

and the Distributed Component Object Model (DCOM). The Java Remote

Method Invocation (RMI) and Enterprise JavaBeans models are not discussed

due to their lack of language independence support.

2.3.1 Common Object Request Broker Architecture (CORBA)

To support very large, complex distributed object applications, it's desir-

able to specify an infrastructure that supports the handling of common opera-

tions such as object lifecycles, identification, interface definitions, and intercom-

28

munication. The Object Management Group (OMG) was formed to reduce com-

plexity and lower development cost and time. The OMG is an international

trade organization incorporated as a nonprofit organization in the United States.

OMG is currently comprised of over 800 corporate members and the number

gets larger every year [21].

Metadata is a crucial ingredient when developing flexible distributed sys-

tems. Metadata provides a distributed system with self-describing, dynamic,

and reconfigurable capabilities. Using metadata, components discover each

other at runtime, further enhancing interoperability [8]. The OMG Interface Defi-

nition Language (IDL) provides the "glue", connecting objects in a standard way

by defining the interfaces to CORBA objects. Because IDL is a declarative lan-

guage, its sole purpose is to allow object interfaces to be defined in a manner en-

tirely independent of any particular programming language [21]. This allows

applications implemented in different programming languages to interoperate;

this language neutrality is critical to CORBA supporting heterogeneous envi-

ronments [8, 21, and 26]. Language mappings specify how IDL is transformed

into a particular programming language, e.g. in C++, interfaces transform to

classes and in Java, interfaces transform to public interfaces.

Figure 4 shows the components an ORB uses to transmit requests trans-

parently from a client to a particular object implementation (servant). When the

client invokes an operation on a servant, CORBA's runtime infrastructure, the

29

ORB Core, delivers the request for the client. For remote servants, the ORB Core

uses the Internet Inter-ORB (HOP) communication protocol to deliver the request

and return the servant's response (if any). The ORB Interface is a CORBA-

compliant standard interface written in IDL that provides standard operations

such as ORB initialization and shutdown.

CLIENT [" OBJECT'
f IMPTKMENTATICasr

\ y
X

NA A

s
S' - IDL1

hJDÜ i
DE ISTUBS'

ÄSÄTON ^ OBJECT

ADAPTER

OBJECT REQUEST BROKER

Figure 4: CORBA Specification

IDL compilers generate IDL stubs and skeletons (proxies). IDL stubs and

skeletons are the "glue" in CORBA, holding clients and servants together. IDL

Stubs provide strongly typed interfaces to clients that hide many low-level net-

working details, e.g. marshaling data into a packet-level format. IDL skeletons

perform the server-side analog by unpacking the packet-level format into typed

data for the application. IDL compilers provide language transparency by trans-

forming OMG IDL definitions into implementation languages, e.g. C++ and Java.

Besides providing language transparency, IDL compilers also eliminate many

30

sources of network programming errors while also providing optimization op-

portunity [56].

The Dynamic Invocation Interface (DII) is an alternative to IDL stubs for

clients to "discover" and invoke objects. While static stubs provide an object

type-specific API, DII provides a generic mechanism for constructing requests at

run time. The interface repository (not shown), a client's object definition data-

base of metadata, allows some measure of type checking to ensure that a target

object can support the request made by the client.

The Dynamic Skeleton Interface (DSI) is the server-side counterpart of DII.

While IDL skeletons invoke specific operations in the object implementation, DSI

defers this processing to the object implementation repository. This is useful for

developing bridges and other mechanisms to support inter-ORB interoperation.

The implementation repository is the server analogue to the interface repository;

this is the server-side object definition database.

The Object Adapter (OA) associates a servant with an ORB, demultiplexes

requests, and dispatches the appropriate operation upcall on a particular servant.

The OA also provides extensibility of a CORBA-compliant ORB to integrate al-

ternative object technologies into the OMA. For example, adapters may be de-

veloped to allow remote access to objects that are stored in an object-oriented da-

tabase. Each CORBA-compliant ORB must support a specific object adapter

called the basic object adapter (BOA). CORBA release 2.2 specifies the portable

31

object adapter (POA), which removed server-side portability problems that ex-

isted in the BOA [21]. CORBA is part of the Object Management Architecture

(OMA). More information on the OMA can be found in Appendix A.

2.3.2 Distributed Component Object Model (DCOM)

DCOM is Microsoft's proprietary standard that extends the COM model

allowing objects to dynamically interact across a network. DCOM simply re-

places the standard COM inter-process communication by a network protocol.

The terms COM and DCOM are used interchangeably, but COM more ade-

quately describes a single machine application, while DCOM describes a multi-

computer (network) application. As with the OMA, COM objects expose their

services using an interface defined by an IDL.

COM Components are created as executable code, distributed as Win32

dynamic link libraries (DLLs) or executables (EXEs). COM components support

many object-oriented characteristics such as polymorphism, encapsulation and

interface inheritance, but do not support implementation inheritance. Binary re-

use is accomplished using containment and aggregation facilities. COM compo-

nents are usually represented as shown in Figure 5. COM components are lan-

guage independent and the library API provides the common component man-

agement services.

All COM components are registered in the Microsoft Windows registry.

The registry serves as a local repository of object definitions that the client uses to

32

lookup interfaces (paths) to objects. All interfaces have a unique identifier num-

ber called an IID or interface ID. Object packages have a unique identifier num-

ber called a CLSID or class ID. These IDs are Global Unique Identifiers (GUID),

generated by an algorithm using the network board physical address, generation

time, and other variables to ensure the generated ID is unique [17].

The client application uses COM objects through COM interfaces. During

the first request (or at a time specified by the client), the server object is activated

and the requested interface is sent back to the client. All COM interfaces are de-

rived from a standard interface called IUnknown. An object can implement one

or more interfaces using the containment and aggregation facilities as mentioned

above. Two types of server objects exist in COM. An in-process object is pack-

aged as a DLL and executes inside the client's address space while an out-of-

process object is packaged as an EXE, capable of residing on the same machine in

a different address space, or in a different machine altogether.

registry

SCW<3>
& registry

registry

RPC ijhannet

—D—

Ping dient —°-[) Ping Server machine

Figure 5: DCOM overall architecture [17]

33

Clients access server objects using a part of the COM infrastructure called

a proxy-stub pair. The proxy-stub pair's purpose is to transfer parameters and

return values across different address spaces or physical machines - a process

called marshaling [12].

All COM calls are synchronous, so scalability becomes an issue for large

applications. To circumvent this shortcoming, Microsoft provides asynchronous

capabilities to COM applications by using an additional middleware platform —

Microsoft Message Queue Server (MSMQ). COM+, the ensuing COM release,

will integrate MSMQ into the core COM architecture making asynchronous

COM calls a built-in architectural feature for COM+ application developers.

2.4 Distributed Object Security

Distributed application development is a very complex undertaking with

many considerations. Although physical limitations such as machine ISA, re-

mote call dispatch rate, and network utilization issues require careful considera-

tion, new issues related to security are raised as well. Clients and components

need to communicate with each other securely. Since many component opera-

tions are now physically accessible by anyone with network access, this raises

many issues of privacy and knowing that a given client or component is author-

ized to use published operations. This section looks at distributed security issues

using Kerberos as a case study security service.

34

2.4.1 Security Issues

Distributed systems are more vulnerable to security incidents than tradi-

tional client/server applications. In a distributed application, components can't

trust any other component in the distributed system to protect its resources from

unauthorized access. Even if components were secure, the communication net-

work is highly accessible to monitoring devices recording network traffic, and

possibly introducing malicious code into the distributed system. The following

issues highlight the difficulties in distributed object system security [8]:

1. Distributed objects may be both a client and a server: Typically, servers are

trusted and clients are not trusted. Components are not easily placed in the

client or server category, since a given component may perform both roles.

How is a component trusted?

2. Distributed objects continually evolve: An object implementation, e.g. a me-

diator, may delegate some processing tasks to runtime objects; this imple-

mentation may change over time, as the component evolves. How do author-

ized clients know these runtime objects are secure?

3. Distributed objects are dynamic and can scale enormously: Every component

is capable of becoming a server, so how are access rights managed for mil-

lions of component servers?

35

4. Distributed objects can be just about anything: There are probably as many

different object designs as there are software designers. How do we know a

component is not an imposter?

These are just a few concerns that IT professionals must address when

placing their organization's valuable data on the wire. Without security support

from a distributed platform, each application is forced to implement its own se-

curity mechanisms. The application would typically have to validate user cre-

dentials against a user database and return some security identifier, i.e. token, for

use in future method calls. All subsequent secure method calls require the client

to pass this security token. This approach works fine for a single distributed ap-

plication, but how do different applications interoperate? Moving the security

controls into a security service solves this problem.

2.4.2 Kerberos Authentication Service

The Kerberos protocol basically consists of three entities: a client (princi-

pal), a server, and a trusted third party to mediate between them. A principal is a

user or process that requires secure communication [12]. Each principle is

uniquely named by a principal number [74]. The trusted intermediary in this

protocol is the Kerberos authentication server, a.k.a. the Key Distribution Center

(KDC) or Ticket Granting Server (TGS). Kerberos authentication provides a

means of verifying the identities of clients and servers, i.e. a principal [12]. Ker-

beros performs authentication using a secret key cryptosystem. A secret key

36

cryptosystem uses a single key for both encryption and decryption; this key is

called a session key in the Kerberos protocol [74]. Clients prove their identity by

presenting tickets and authenticators to servers [12 and 74]. A ticket is an encrypted

data structure issued by the KDC or TGS that identifies a principal and session

key [74]. An authenticator is an encrypted data structure that proves a principal

actually possesses the session key. The Kerberos Version 5 protocol is imple-

mented for a variety of systems, most notably Microsoft Windows 2000, where

it's used as an authentication service for distributed system security [75]. The

Kerberos RFC basically addresses three security services: 1) authentication, 2)

data integrity, and 3) data privacy.

Authentication [74]: The Kerberos authentication process is shown in Fig-

ure 6. The notation generally used to indicate encryption is Cyphertext = {Plain-

text} Key [12]. In Figure 6, all security components are spelled out to prevent

confusion. First, the client sends a request to the KDC by identifying itself, pre-

senting a nonce (message identifier), and requesting a ticket for a given server

process [12 and 74]. The KDC creates a random encryption key (session key) and

generates a ticket for the requested server process. The KDC encrypts the session

key and nonce using the client's secret key. The KDC encrypts the ticket, which

consists of the session key, authorization data, principal name, Kerberos realm,

and valid time period (to name a few) using the server process' secret key [75].

37

Upon receipt, the client caches the ticket, and decrypts the session key for

future use. The client generates an authenticator that contains a current time-

stamp, then encrypts the authenticator using the session key. The client then

transmits the ticket and the newly generated authenticator to the server process.

The server decrypts the ticket using its secret key, and extracts the identity of the

client and the session key from the ticket.

(KDC J

Kerberos Authentication

1. Client -> KDC: Client, Server, nonce
2. KDC-> Client: [Session Key, nonce] Client Key, [Ticket] Server Key

3. Client-> Server: [Authenticator] Session Key, [Ticket] Server Key

Client W Server

Figure 6: Kerberos Authentication

To authenticate the client, the server process decrypts the authenticator

using the extracted session key, and verifies the timestamp is current. Successful

verification of the authenticator proves that the client does indeed possess the ses-

sion key, because the client could only obtain the session key by successfully de-

crypting the session key sent from the KDC with its very own key. The session

key is optionally used to authenticate the server process (mutual authentication)

by requiring the server process to send a fresh message encrypted using the ses-

sion key to prove its identity to the client. It may also be used to encrypt further

38

communication between the two parties or to exchange a separate sub-session

key to be used to encrypt further communication.

The Kerberos protocol is also designed to operate across organizational

boundaries. A client in one organization can be authenticated to a server process

in another organization. Each Kerberos organization establishes a realm and au-

thentication is performed using an inter-realm key [74]. The exchange of inter-

realm keys registers the ticket-granting service of each realm as a principal in the

other realm. A client is then able to obtain a ticket-granting ticket for the remote

realm's ticket-granting service from its local realm. Tickets issued by the remote

ticket-granting service will indicate to the server process that the client was au-

thenticated from another realm.

Data Integrity and Data Privacy: Message integrity between principals

can also be guaranteed using the session key. This approach provides replay at-

tack detection and message stream modification attacks. It is accomplished by

generating and transmitting a collision-proof checksum, i.e. a hash or digest

function, of the client's message, keyed with the session key [75]. Privacy and in-

tegrity of the messages exchanged between principals can be secured by encrypt-

ing the data to be passed using the session key passed in the ticket.

2.5 Distributed Object Storage

Database systems play an important role in distributed object system de-

sign. At some point in a distributed architecture, data will be persistently stored.

39

The way data is created, read, or updated can greatly impact performance and

overall distributed system design. This section provides a brief discussion on the

major areas designers need to consider.

2.5.1 Architectures

There are three typical architectures used for parallel and distributed da-

tabase systems as shown in Figure 7 [20]. Parallel database machines typically use

the shared-everything or shared-disk layouts as the prominent feature is one of

tight hardware coupling while a distributed database typically employs the

shared-nothing architecture, as the nodes are loosely coupled or physically sepa-

rated.

SHARED BVBRYTHINa SHARED ECK

Mcnosy Memory

CPU CPU

McXLCCty Memory

1 1

SHARED HDTHINO

Memo?

I I
Vfi-mnry

Figure 7: Parallel and Distributed Database Architectures

The most common architecture for small to mid-sized parallel database

machines is symmetric multiprocessing (SMP), commonly called shared-everything

40

where multiple processors are used in parallel. The most important drawback to

this architecture is the von Neumann bottleneck: CPU to memory bus contention.

The opposite of shared-everything is shared-nothing, which has been the

architecture of choice for designers of highly scalable parallel database systems

[20]. In this system, each node is independent, with its own CPU(s), memory,

and disk. This approach eliminates the von Neumann bottleneck, but it requires

complex data fragmentation and allocation Schemas in order to achieve optimal

performance [28].

Combining these two extreme architectures into a design that takes ad-

vantages from both have resulted in the shared-disk architecture, somewhat

similar to shared-nothing, except centralized disk farms are used for storing data.

This approach eliminates almost all data partitioning problems associated with

the shared-nothing architecture, but possesses the scalability problems associated

with contention for a centralized resource - in this case, the disk farm [12 and

20]. New clustering products such as Microsoft Cluster Server for Windows NT

have "reincarnated" shared-disk architectures, which currently found a market

niche providing failover services for mission critical business applications [35].

2.5.2 Transactions

Transactions have four properties (commonly referred to as ACID proper-

ties) [9]:

1. Atomicity: Transactions are atomic (all or nothing).

41

2. Consistency: Transactions transform the database from one consistent

(known) state into another consistent state.

3. Isolation: Even though there are many transactions running concurrently,

updates are concealed from other transactions until a commit occurs.

4. Durability: Once a transaction commits, its updates are never lost.

Different sorts of parallelism that one can consider for distributed transac-

tions:

1. Task spreading: A task is divided into a number of similar subtasks, which exe-

cute on different nodes. This requires a coordinating process that hands out

subtasks, and then collects and combines the results.

2. Pipeline: A task is decomposed into subtasks, which execute consecutively in

the same datastream [38]. Subtasks are assigned to different processes, each

receiving input from a predecessor subtask, and each sending a result to a

successor subtask. Every subtask is activated upon receiving its first data. If

the last subtask gets its first input before the first subtask sends its last output,

we will have all processors working in parallel.

Task spreading and pipelining techniques are used in different ways for dis-

tributed transaction or query processing:

1. Intra-operator parallelism lends itself to pipelining since one operation in a

query tree is distributed over more than one processor (same data).

42

2. Inter-operator parallelism lends itself to task spreading since many operations in

a query tree may be executed on different nodes concurrently, a.k.a. inde-

pendent parallelism [38].

2.5.3 Serializability

Centralized synchronization mechanisms such as the two-phase commit

protocol (§2.5.4 Recovery Protocols) are extensions of centralized control meth-

odologies applied to a distributed environment where the notion of serializability

is the generally accepted criterion for correctness. Serializability refers to a set of

interleaved transactions, which produce the same result as executing the transac-

tions individually, i.e. serial and interleaved schedules are equivalent [9].

The basic serializability concept is the same for a distributed environment,

but with the added complexity imposed by transaction distribution. For distrib-

uted transactions, we require local serializability of all local schedules and global

serializability for all global schedules, i.e. all sub-transactions of global transac-

tions appear in the same order in the equivalent serial schedule at all sites [28].

For example, if we have two global transactions Tl and T2, each having two sub-

transactions at sites A and B, then we can say T (Al) and T (Bl) are sub-

transactions of global transaction Tl; and T (A2) and T (B2) are sub-transactions

of global transaction T2. Distributed serializability means we have local ordering

at sites A and B where T (Al) < T (A2) and T (Bl) < T (B2) and global ordering for

transactions Tl and T2 where Tl < T2 for sites A and B.

43

2.5.4 Recovery Protocols

An important goal in distributed data systems is that a failure of one site

should not affect the processing in another site, i.e. operational sites should not

be left blocked, waiting on a failed or otherwise unresponsive site [9 and 28]. In

this section, two common protocols suitable for use in a distributed environment

are discussed: two-phase commit and three-phase commit. The following discus-

sion assumes a global or Distributed Transaction Coordinator (DTC) exists and

the DTC possesses knowledge of transaction agents. Transaction agents (a.k.a.

brokers or transaction monitors) are the other sites participating in the transaction.

The two-phase commit protocol ensures that the outcome of a transaction

is consistent across all transaction managers (TM) participating in the transac-

tion. As the name suggests, the protocol operates in two distinct phases to ulti-

mately commit or abort a transaction. Figure 8 illustrates the two-phase opera-

tion for a commit. The two-phase commit is a blocking protocol. Phase one evalu-

ates the condition of each resource manager (RM) to perform the transaction.

The DTC communicates with each local TM to determine if the local RM is pre-

pared to commit the transaction. For the local TM to return a prepared message,

the local RM must guarantee that it can commit the update i.e. the RM must

force-write all log entries for local resources used by the global transaction [9].

Each local TM responds to the DTC that it can or cannot guarantee its results.

44

Phase One:
1. Coordinator says prepare to commit.
2. Resource manager says commit/abort

If resource manager says "commit",
it blocks waiting for the global commit

Coordinator

Phase Two:
1 . If all "Yes", coordinator sends commit
2. If one or more "No", abort.

Resource Manager

Figure 8: Two-Phase Commit Diagram

Phase two completes the transaction. When the DTC receives replies from

each local TM, it force-writes an entry to its own physical log, recording its deci-

sion regarding the transaction [9]. If all participants agree, the decision is com-

mit. If at least one participant does not agree, the decision is abort. In either case,

the global coordinator informs all participants of the decision and all participants

must commit or rollback the transaction as instructed.

If an agent site should fail during the transaction, its restart procedure will

look for the decision record in the DTC's log. If the site finds a commit decision,

then the local TM can perform a forward recovery by redoing previously written

transaction work. If it finds an abort or no decision, then the local TM can per-

form a backward recovery by undoing state changes to restore the local database

to its state prior to the transaction. If the DTC fails, a termination protocol must

be invoked. The simplest termination protocol is for the participants to wait for

45

the DTC to come back up or time out, whichever is sooner. A more realistic ap-

proach known as the cooperative termination protocol modifies the standard

two-phase algorithm. The cooperative termination protocol requires the DTC to

send a list of transaction participants to all agents. If the DTC fails, agents can

contact other agents to determine if the DTC made a decision to complete the

transaction. If the DTC failed before making a decision, then they can elect a new

coordinator [28]. Although this method reduces the chances of blocking, block-

ing is still possible.

An alternative non-blocking protocol to the two-phase commit is the three-

phase commit protocol. To arrive at the three-phase protocol, a pre-commit phase

is added to the two-phase algorithm at the point where the participants vote and

the global coordinator sends its decision regarding either a global commit or

abort.

In the pre-commit phase, once the DTC receives all participant commit or

abort votes, it sends a global pre-commit message, which tells all participants

that they will definitely commit or rollback in due course. Each participant ac-

knowledges receipt of the pre-commit message and continues local processing.

Once the coordinator has received all acknowledgements, it then issues the

global commit or abort. The important point to this algorithm is that all opera-

tional agents are informed of the global decision before the global commit or abort

46

instruction is issued, so agent sites are not blocked waiting on this global deci-

sion and therefore act independently in the event of failure [28].

2.5.5 Object-Relational Data Mapping

This section provides a background that considers the issue of architecting

object-oriented applications for high performance with relational databases. Key

ideas in this section are the optimization of data objects to relational table repre-

sentations and data object cache management using the mediator design pattern

[13]. While this section primarily explores the mapping between business object

instances and relational tuples using the mediator pattern, the basic idea of pro-

viding a managed cache atop a RDBMS to improve performance directly relates

to forecast availability and performance in the TFMS application.

Figure 9 shows an object-relational application that provides an OO inter-

face to underlying relational data [41]. Applications retrieve and store data using

the object cache interface while a cache manager manages cache contents based

on a collection query predicate [43].

A well-managed object-relational cache application addresses two major

components:

1. Object-Relational Mediator(s): The mediator uses an adapter design pattern to

map objects to relational tuples and vice versa [13, 41, and 43]. Business ob-

jects are managed in a shared cache on behalf of several applications. The

shared cache contents are established using a collection predicate, which

47

specifies collection membership [43]. Tuples in the RDBMS are mapped to

object instances and any updates to business objects are mapped to update

operations on the RDBMS.

Object-relational mappini

RDBMS RDBMS RDBMS

Figure 9: Object Cache [41]

2. Performance Optimizations: This component realizes that we must choose

appropriate object to relational mappings, and also take advantage of rela-

tional database query and performance optimizations. Items such as stored

procedures and batch operations need to be considered when designing this

interface, as every advantage needs to be exploited.

As Figure 10 shows, each object instance maps to a corresponding rela-

tional table. A separate table is used for each object type. A simple way to map

one-to-one and one-to-many relationships is to use an embedded foreign key

field for each object and/or object collection relationship. The other mapping

shows how a lookup table is employed to map many-to-many relationships. Since

a cache lookup is much faster than a disk access, the goal when using an object

48

cache is similar to operating system paging structures, where you try to maxi-

mize the cache hit ratio to improve performance [11].

•5*

Department \- -^ Employee |

J3
o

cs

«8

ca
o

Department

I
Employee

PK FK
zr

Figure 10: Object-Tuple Mapping [41]

2.6 Summary

This chapter reviews CORBA and DCOM, the two predominant distrib-

uted object paradigms. An introduction to distributed database architectures,

transactions, and recovery protocols is also presented along with object-relational

mapping performance issues.

49

III. Distributed System Design

There is no silver bullet. - F. Brooks

3.1 Introduction

The following characteristics have been identified as key ingredients to-

ward developing large, distributed component software systems, and when con-

sistently applied, produce good development results [3,4,5, and 6]:

1. Use Case Driven (transaction - oriented)

2. Architecturally Focused

3. Documentation-Based

4. Evolutionary Process Model: Incremental, Iterative, and Integrative

The lifecycle process used in this investigation possesses these four char-

acteristics. The terms use case scenario, transaction model, and use case are used in-

terchangeably throughout this section. The software development lifecycle cho-

sen for this investigation:

1. Requirement Analysis captures the business model and its processes while

Analysis Modeling specifies these requirements using different views, e.g. ob-

ject/entity-relationship models, data flow diagrams, interaction/state dia-

grams. These two phases are combined into a Software Requirements Specifica-

tion in this report.

2. Design Modeling maps the analysis model to a software architecture. In this

report, this phase is referred to as Distributed Object System Design.

50

3. Implementation Modeling maps the software architecture to the processing en-

vironment or hardware architecture.

4. Coding applies development tools to the implementation model.

5. Quality Assurance, testing, and experimentation validates algorithm selection

and code functionality.

6. Evolution and Maintenance is incremental, iterative, and integrative.

This chapter addresses software requirement specification and distributed

object system design.

3.2 Motivation

Organizations that bind their business functionality to a specific technical

implementation are faced with the prospect of having to continually re-engineer

basic business rules as the system evolves. By using Object-Oriented Software

Engineering (OOSE) and modular software construction methods, business func-

tionality is completely isolated from all underlying technical constructs. When

these technical constructs are re-engineered for performance reasons or extended

as part of normal system evolution, the business model presented to customers

remains unaffected. The simple organizational architecture depicted in Figure 11

coveys powerful OOSE/modularity principles and serves as a primary motiva-

tion toward applying a modular, OO design methodology.

51

Organisation

T
V

A given organisation [\
contains a business
model»;

<<Interface >>
Business Model

~z
iSjjrtat" business products .\
do i.e. the "specification"
of business requirements.

Technical Architecture

"How* business products are t^
produced i.e. the
"implementation" of business
requirements.

Figure 11: Organizational Architecture

As Figure 11 illustrates, the business model provides an interface to reflect

"what" organizational services and products are advertised to consumers. The

technical architecture implements the organization's business model (interface)

in a particular architectural environment, so it's an extension or derived from the

business model [4]. This separation of interface from implementation is the key to

minimizing implementation dependencies and maximizing reuse in object-

oriented systems [13 and 14]. In distributed object systems, this separation of in-

terface from implementation is strictly enforced in IDL (§2.3 Distributed Object

Paradigms). Oddly enough, many OO methodologies don't emphasize this key

principle in developing reusable OO systems [5, 6, and 29].

3.3 Proposed Forecast Generation

Figure 12 shows a proposed AFW architecture using CORBA (§2.3.1

Common Object Request Broker Architecture (CORBA)) as the distributed object

52

architecture. The TAF validation facility (QC) is now located at all OWS sites in-

cluding AFWA (§1.2.1 Current Forecast Generation). Forecasts are validated

upon entry into the global network and replicated to meet performance, availabil-

ity, and AFW dissemination requirements IAW AFMAN 15-111 [67]. This archi-

tecture follows a three-tier design methodology where clients (weather custom-

ers and forecasters) form the user interface, application logic (TAF validation

rules) form the middle-tier (application or web servers), and products (forecasts,

observations, and statistics) form the data-tier (§5.3.1 N-Tier Topologies) [2, 4, 7,

8,16,27, and 32].

Prepare and amend forecasts

Figure 12: Proposed Architecture

Figure 13 shows a more detailed view of an OWS conforming to this de-

sign methodology. The user interface may consist of thin-client customers, e.g.

web browsers, and thick-client forecasters, e.g. Win32 applications. The middle-

tier consists of business logic (TAF validation rules) located on application serv-

ers. The data-tier consists of TAF products accessible either through an object

53

cache or the underlying datastore. Many of the advantages obtained by using

the N-tier approach are mentioned in the introduction, but the largest advan-

tages concern resource scalability and configuration flexibility (§5.3.1 N-Tier To-

pologies).

ows
User Interface

(Thin client- Customers)
(Thick client- Forecasters/Observers)

Application Server
(Business Rules)

Data Server
(Object Cache)

OWS Database

User Interface
(Thin client- Customers)

(Thick client - Forecasters/Observers)

Application Server
(Business Rules)

Data Server
(Object Cache)

AFWA Data Warehouse

Figure 13: Proposed N-tier Architecture

Well-defined distributed object systems permit you to add, delete, or mod-

ify business rules (TAF validation rules) without affecting clients or any other

component in the system. This is a very important consideration when develop-

ing large distributed systems because functionality may be added incrementally

[13 and 14]. Monitors (agents) can observe trend data and send instructions or

alarms (react) if current conditions warrant an amend action. If an event channel

is used, all OWS sites could register for these alarms and receive them automati-

cally, providing additional real-time safety updates to TAF customers at their re-

spective sites [21 and 32].

54

In the proposed process, the OWS database contains forecast, observation,

weather station, and statistical data. When a TAF is generated, the encoding and

validation function is performed at the originating OWS, using AFW-defined en-

coding instructions, MAJCOM-defined weather element category thresholds, and

observation trend data for the particular station [46,59, and 68]. The TAF is then

distributed by the originating OWS to meet near real-time performance and avail-

ability requirements [67]. This research also addresses a suitable TAF replication

facility (§5.4.2 Publication Transaction) for a CORBA environment.

3.4 Software Requirements Specification

Software requirement specification captures user requirements and trans-

forms these requirements into a detailed description of the distributed software

architecture. The system's information, functions, and behavior are analyzed

and the system is partitioned accordingly [6]. Software testing and validation

criteria are also developed during this phase to provide traceability to user re-

quirements. System constraints, performance requirements, and architectural

considerations (§1.2.2 Architectural Discussion, §1.6 Assumptions, Scope, and

Constraints) were previously discussed and are not repeated.

3.4.1 Business Description

A business description describes how business services are provided. Is-

sues affecting business products, customers, and processes are typically dis-

55

cussed, as this description is an essential input into the Information System

Model (§3.4.2 Information System Model) [27].

3.4.1.1 Overall Description

The TFMS offers terminal forecasting services to weather customers. A

terminal forecast consists of a concise statement of the expected meteorological

conditions significant to aviation at a specific airport during a specified time pe-

riod. Terminal forecasts are prepared, issued, and distributed every six hours

and are valid for a 24-hour period [59]. Amendments to a given TAF are issued

as needed. These scheduling requirements are needed to satisfy the United

States Aviation Authority, the Federal Aviation Administration (FAA), and the

International Civil Aviation Organization (ICAO). A given TAF is coded in a

format based on World Meteorological Organization (WMO) aerodrome forecast

code, FM 51, and Aviation Routine Weather Report (METAR) code for both do-

mestic and international use [38 and 59].

The TFMS validates forecasts by comparing the forecasted weather to ac-

tual weather observations, at specific times (usually hourly) during the valid pe-

riod of the forecast. Forecast verification is the AFW term used to denote the

feedback provided a weather analyst on how his forecast compares to actual

weather [68]. In this report, the term validation is used instead of verification. In

both the context of software testing and forecast verification, validation refers to

the software functionality being traceable back to a specific user requirement [6].

56

Several statistics are computed to provide the analyst feedback on her forecasting

skill.

3.4.1.2 Functional Description

The TFMS consists of the following major application functions:

1. Weather Analyst Management: This function is the client interface to the dis-

tributed system. A weather analyst may perform the following actions:

a. Submit a new, amended, or corrected forecast.

b. Submit a new or corrected observation.

c. View TAF accuracy reports for a given set of weather stations, weather

elements, categories, and time period; i.e. day, month, quarter, or year.

d. View TAF, observation, and statistical data that generated the TAF accu-

racy report, i.e. computational source data.

2. Terminal Forecast Validation Functions: The terminal forecast validation

function validates all new, amended, or corrected TAF and observation data

entered into the distributed system. Major functions:

a. Accept TAF or observation data from weather analysts.

b. Validate all TAF and observation weather entries for encoding format er-

rors [59 and 67].

c. Validate all TAF weather elements using weather station trend data [46].

d. Update station trend data.

57

e. Return result of validation to the forecaster. If process fails for encoding

or trend validation, provide the analyst with meaningful error (encoding)

or warning (trend) information. If validation passed, publish the TAF.

3. Terminal Forecast Publication Management: The TAF publication function

distributes TAF, observation, and alarm data to meet system publication re-

quirements. Major functions:

a. Accept validated TAF and observation data.

b. Publish TAF and observation data to other regional processing centers.

c. Send alarm to analyst if forecasted weather element becomes "out of cate-

gory" with actual weather.

4. Terminal Forecast Collection Management: The TAF Data Management func-

tion manages all TFMS data. Major Functions:

a. Accept TAF, observation, station, and statistical data.

b. Manage TAF, observation, station, and statistical collections.

c. Determine TAF weather element category as defined by MAJCOM cate-

gory and threshold definitions [68].

d. Compute and update TAF accuracy statistics.

5. Terminal Forecast System Administration: The TAF system administration

function permits configuration of the TFMS. Major Functions:

a. Create and modify weather station data and category definitions.

b. Schedule TAF accuracy reports generation.

58

c. Configure TAF collection definitions for each processing center.

3.4.1.3 TAF Validation Issues

The Automated Weather Distribution System (AWDS), which currently

produces weather reports at Weather Flights, also has no QC capability. This

means that forecasts with typographical errors are submitted into the global

network. The TFMS must integrate QC and provide validation facilities for TAF

submissions, alerting the forecaster about TAF errors before entry into the global

network. The TFMS must also provide an alarm facility to notify forecasters that

a current forecast has become "out of category" due to recent weather observa-

tions.

3.4.1.4 TAF Publication Issues

Since terminal forecasts are used by a wide variety of aviation customers,

terminal forecast availability and dissemination is a very important design issue.

To ensure the highest availability of current terminal forecast information, a rep-

lication methodology must be addressed so the system avoids the centralized bot-

tleneck issue, which greatly affects system performance and scalability [12]. TAF

replication can be modeled using a variety of distributed algorithms. Since ter-

minal forecasts are required in near real-time, performance of this algorithm be-

comes a very important design consideration.

59

3.4.1.5 Measuring TAF Data Quality and Accuracy

The TFMS provides automated metric collection facilities to report data

quality and forecasting accuracy based on submitted TAF/observation data. The

first metric collection facility is concerned with collecting statistics based on static

data components, i.e. data format/ attribute values, to correct and determine data

quality before data dissemination. These measurements serve as an assessment

of the overall data quality of submitted TAF/observation products and may also

serve as a basis for data warehouse certification [71]. Figure 14 shows the con-

cept behind this approach.

Rules Domain Values

Forecast

Remote Data Stores

Valid Forecast

Local Data Store

Validation Report

Invalid Forecast

Figure 14: TFMS Static Data Quality

When a forecast is submitted for validation, a rules engine is used to proc-

ess each forecast attribute, e.g. wind speed. The rules engine uses a set of rules

and a set of allowable attribute values to determine the data quality for each at-

tribute. A forecast attribute value passes format validation if the attribute's value

is a member of the set of domain values defined for that particular attribute, e.g.

60

forecast type = {amended, corrected, null}. Once all attributes are processed, the

forecast is either valid or invalid. Valid forecasts are published to the local OWS

data store and other regional sites. Invalid forecasts require reconciliation by the

weather analyst to determine why validation failed. In both cases, a validation

report collects the result of each rule in the engine and sends the report to the

analyst and the local OWS datastore. The weather analyst uses the report to con-

firm a valid forecast or correct an invalid forecast. The local data store uses the

report for statistical purposes to determine data quality for each forecast attrib-

ute.

The second metric collection facility is concerned with collecting statistics

based on dynamic data components, i.e. actual weather conditions versus an ana-

lyst's forecasted conditions, to provide the analyst or organization an indication

of forecast accuracy. Figure 15 shows the complete TFMS validation and meas-

urement model proposed in this research. When a forecast or observation is

submitted for validation, a rules engine is used to process each forecast attribute,

e.g. wind speed. The rules engine uses a set of rules, domain values, trends, and

MAJCOM category definitions to determine the data quality and classification of

each weather attribute.

61

Forecast **■ Remote Data Stores

Rules Engine Local Data Store

'^i j\
Invalid Forecast Alarm

Validation Report

Figure 15: TFMS Validation and Measurement Model

A forecast attribute is checked for format, then categorized, e.g. wind

speed category A, and finally compared against the most recent observed cate-

gory (trend) for that specific location. An observation attribute is checked for for-

mat, then categorized, and its trend information updated accordingly. Once

processed, the forecast or observation is either valid or invalid. Valid

TAF/observation data is published to the local OWS data store and other re-

gional sites. Invalid forecasts require reconciliation by the weather analyst to de-

termine why validation failed. Reconciliation is also required when an actual

weather category differs from the current forecast category for a given weather

element, i.e. TAF amend alarm is issued. In all cases, a validation report collects

the result of each rule fired in the engine and sends the report to the analyst and

the local OWS datastore. The weather analyst uses the report to confirm valid

TAF/observation submissions or correct an invalid submission. The local data

62

store uses the report for statistical purposes to determine data quality and record

forecast accuracy.

Examples of forecast accuracy metrics include the percent correct and yes/no

capability metrics [68]. As shown in Table 1, categorical skill scores and forecast

validation statistics are computed using a two-by-two matrix.

Table 1: Two-By-Two Forecast Validation Matrix

Forecast "Yes" Forecast "No"
Observed "Yes" A B
Observed "No" C D

The percent correct and yes/no capability formulas described below are

computed using matrix variables A, B, C, and D. These variables are defined for

a specific forecast weather Element, e.g. wind speed, as shown in Table 2 [68].

The percent correct metric is the number of forecast hits divided by the to-

tal of forecast hits and misses, given by the formula:

Percent Correct = (A +D)+(A +B + C + D)

The capability yes/no metric is the number of forecast hits (forecast = yes

or no) divided by the total of forecast hits and misses (forecast = yes or no) for

the weather event, given by the formulae:

Capability (yes) = A + (A + B)

Capability (no) = D + (C + D)

63

Table 2: Matrix Element Definitions

Matrix Element Definition
A Number of times that a categorized weather

element was forecast to occur (forecast = Yes)
and then actually observed (observed = Yes)

(regarded as a forecast "hit")
B Number of times that a categorized weather

element was not forecast to occur (forecast =
No) but then actually observed (observed =

Yes) (regarded as a forecast "miss")
C Number of times that a categorized weather

element was forecast to occur (forecast = Yes)
but was not actually observed (observed = No)

(regarded as a forecast "miss")
D Number of times that a categorized weather

element was not forecast to occur (forecast =
No) and was not observed (observed = No)

(regarded as a forecast "hit")

3.4.2 Information System Model

An information system model describes system objects and shows how

these objects are used or processed by the software system [6 and 27]. There are

three analysis tools that are very useful in decomposing a complex distributed

object system. The first is the software system schema, a.k.a. an object/entity-

relationship model, which serves to identify software system objects, showing

how they collaborate within the information system. The second is the informa-

tion flow model, which shows how data is transformed through the software sys-

tem [6]. The final tool is the transaction model, which decomposes system trans-

actions or use case scenarios, into object-specific behavior [27].

64

3.4.2.1 TFMS Schema

In constructing the software system schema, data and control objects are

identified and their relationships analyzed [6]. The following criteria are useful

for categorizing objects in the software system schema [76]:

1. I/O Objects: These objects correspond to abstractions dealing with system

I/O functions, e.g. network I/O, input sensors, and output controllers.

2. User Role Objects: Represents a type of user or system action interfacing with

the system, e.g. submitting a forecast for validation/publication.

3. Control Objects: An active object that has state and controls the behavior of

other objects or functions, e.g. publication and validation agents.

4. Data Abstraction Objects: Data stores, e.g. weather station and validated fore-

cast persistent data.

5. Algorithm Objects: Encapsulates an algorithm in the problem domain, e.g.

primary copy, pipeline and CORBA Event Service publication algorithms.

As shown in Figure 16, the TFMS is composed of an organization, agents,

alarms, reports, and system settings. The AF Weather organization contains re-

gions, major commands, and weather encoding instructions applicable to all

weather stations [59]. Regions consist of weather stations while major com-

mands contain weather stations and define weather validation categories specific

to the command's requirements. Each validation category, e.g. wind speed, con-

65

tains a number of thresholds that further subdivide that category, e.g. category

A,B,C...etc.

Termlnafo recast Managementsystem

»Start SystemQ

-TfMS_Settingf-

«DataObject>>
TFMS_Settinq

%Name
^Description
%UserID

♦SaveSetthgQ

%teao
%block_statbn_numbei
%unlt_name
%ma1com
%reqtonal_hub
%qeoqraphical_reglon
%aircraft_type
%weaoon_type
%cRmate_type
%runway_headlng

RegbnaLStatbns

Majcom

%descn>tlon
*parse(strihg element]

Categoty_Defntbns

MAXX>M_Statbns

«Data Object»
Weatherstation O-

%stattan
%name
%key
%forecast_value
%forecast_cateqory
%observed_value
%observed_category

+qetStatton()
JqetKevO
*setKeys(str1ng station, strtig name;
♦updateQ

«Data Object»
TFMS_VaHdattonCateqory

%mafcom
%name : strfriqf)
%map: <stitig(l), ThreshoU*>

♦qetMafcomQ
JgetKeyO
♦setKeysfstring station, strhg name'
♦updated
♦sendAlarmQ

Otegoty_ Threshokls

 io..*
%min
^Knax

♦vaUate{kit element)
*setThreshoM(lnt min, Int max)

♦qetKevO
♦setKeyfstrinq key)
♦execute(string element)

-Qiecks_Trend—

<<Abstract»
Weather

%fcao : strtiq(4)
%messaqe H : {METAR, SPECI, TAF)
^modifier : (AMD, COR, RTD}
%whd_directton: natural
%wbd_soeed : natural
%whd_qusts: natural
%vfaibllty: natural
%siqnficant_weather: strlng()
%doud_byer: string()
%remarks: stringQ
*key

♦qetfcaoO
♦qetKevO
*setKeys(string Icao, string time)

JL

Vaklates_ Weather_Ekment

G>iect$_Forec3sttfObservatk>ns

Pubfshes_Forec35tyObservdtions

«Data Object»
Forecast

%fssue_date : Str1nq(6)
%fesue^tft>e : {0..23}
%month:fl..l2>
%quarter:'fl..4>
%year: Strfnq(4)
%chanqe_qroup: string^
%crosswhd

«Data Object>
Observation

%date_tfrne : UTC + T
%njnway_vfsuaLrar>ge

-Update$_Trends-

%kev
%category: string^

—Statbn„$tatiStics~

VaUdationElement
%matrtx

Figure 16: TFMS Object-Relationship Diagram

Each weather station contains unique weather, trends, and statistics. TFMS

agents perform a number of operations within the system (§3.4.2.3 Role of TFMS

66

Agents). For instance, a validation agent checks a weather element's format and

validates the element against station trends. TFMS alarms notify the weather

analyst of a system condition requiring their attention. For instance, an amend

alarm for a given location would indicate the latest forecast recorded for that sta-

tion is out of category with the latest observation on record.

TFMS reports consist of the analyst's desired time interval, weather sta-

tions, and weather elements involved in the report. TFMS system settings are

configured so each analyst may customize the environment to individual prefer-

ences - accomplished by using the network logon user id. While Figure 16

shows what objects, relationships, and message paths are used with the TFMS

schema, it really doesn't show how information is processed. In the next section,

data flow diagrams are used to show how information flows through the system.

3.4.2.2 Information Flow

Data Flow Diagrams (DFD) help reduce complexities for software engi-

neers by providing a system view as a network of processes connected by data

flows [27]. There are many uses for a DFD besides simply showing information

flow within a software system. A DFD with formal semantics can model critical

software functions and determine the serializability of distributed transactions

(§2.5.3 Serializability) to ensure design correctness [39]. In this section, a formal

semantics approach is not taken. A DFD is simply used here to decompose the

67

information model to reduce the inherent complexities with distributed object

system design.

Data Presentation

^/Reports,

Errors Information
Other Regions

 Current Forecast,
■*-*■"■** Observation

Weather Analyst Data Warehouse
Data,
Settings.
Commands

Forecasts,

Forecasts,
Observation 3 Local Datastore

message
Alarm

TFMS: Context-Level DFD

Figure 17: TFMS Context-Level Data Flow Diagram

Figure 17 shows the starting or context -level for function decomposition.

The main focus of the context-level is to show the producers and consumers of

information flow [6]. The TFMS identifies the weather analyst as the producer

and the user interface, other OWS sites, AFW data warehouse, local datastore,

and alarms as the consumers of information.

In Figure 18, the TFMS context-level DFD is decomposed into a level one

DFD to further define the TFMS software system. As Figure 18 shows, there are

four primary processes: 1) Configure stations, settings, and categories; 2) Process

forecasts; 3) Process observations; and 4) Generate Reports. Forecast, observa-

tion, statistic, setting, station, category, rule, format, and trend data objects are

also shown combined into one datastore; this datastore is further decomposed

along with the rest of the system in subsequent diagrams.

68

Weather Analyst

_- Data.

Configure
Report Settings.

Weather stations.
Validation Categories

'Pr^a^N
Forecasts. Observations,
Statistics, Settings.

horacaiiy " > Stations, Categories,
Rules. Formats, Trends

Reports.
Forms.
Errors Informations

Data Presentation

TFMS: Level 1 Decomposi

Figure 18: TFMS Level One Data Flow Diagram

The process forecast and process observation processes identified in the level

one DFD are further decomposed in Figures 19 and 20.

1 IR ta *r up

I [Trends

1 [Stations ^Categories/

1 ICategories

^
1 [Statistics

1 iForecasts / Keceve
- Valid Forecast \foracast

date/Che
Trends Validation Report

Valid Forecast,
»lidation Report

Data Presentation

. Valid Forecast

Valid Forecast^
Data Warehouse

^■^N /aKd Forecast

Other Regions

Local Datastore Information Flow

TFMS: Process Forecast Decomposition

Figure 19: TFMS Process Forecast Data Flow Diagram

In Figure 19, a forecast is received from the user interface. The forecast's

format and trend is then validated. If the forecast fails validation, the forecast

and a validation report are returned to the weather analyst. The validation re-

port is also published to the local data store to update format statistics. If the

69

forecast passes validation, the forecast is stored locally then published to other

OWS sites. The validation report is also published to the local data store to up-

date format and accuracy statistics.

In Figure 20, observations are processed in much the same way. The pri-

mary difference is the check/update trend process. An alarm is generated if the

observed condition is out of category with the current forecast condition.

Data Presentation

Data Warehouse

Valid Observation

Valid Observation

Other Regions

Local Datastore Information Flow
TFMS: Process Observation Decomposition

Figure 20: TFMS Process Observation Data Flow Diagram

3.4.2.3 Role of TFMS Agents

In the TFMS schema, a distinction was not made on the roles a TFMS

agent can take. This section provides a brief discussion of major TFMS control

agents and their responsibilities.

Role of Validation Agents: Validation agents ensure all TAF data values

are checked for proper encoding I AW AFM 15-124, Meteorological Codes [57].

In addition, validation agents also check a forecast's weather element value

70

against the most recently recorded observation value for that particular element.

Validation agents will use a number of different data validation methods to ac-

complish this task. Since each terminal site possesses unique weather patterns, a

validation agent must ensure it uses the appropriate trend data for each site. Be-

cause validation agents require observation trend data as part of the validation

process, this data must be locally accessible. Validation agents also document

validation results in the form of a validation report for each forecast or observa-

tion attribute. Validation agents coordinate with publication agents to dissemi-

nate weather, reports, and alarms.

Role of Publication Agents: Since validation is performed prior to TAF

entry into the distributed system (§3.3 Proposed Forecast Generation), the data is

assumed correct when it reaches a publication agent in the same address space.

Publication agents distribute weather, report, and alarm data to meet system

availability, functionality, and performance requirements. The specific replica-

tion facility for weather data distribution is subject to experimentation based on

the read-only characteristic of a validated TAF or observation. TAF/observation

publications must be written to stable storage prior to replication [9 and 12].

Publication agents coordinate with collection and metric agents to deliver system

products.

Role of Collection Agents: Collection agents build and maintain data ob-

ject cache collections (stations, forecasts, observations, and statistics) and usually

71

consist of two other system agents - query and notification agents [41 and 43].

The query agent is responsible for building the cache collection based on SQL or

object query language (OQL) data manipulated language (DML) declarations

over the underlying datastore [9 and 44]. The notification agent is responsible

for receiving weather data from other regions, so it's used as a sink for CORBA

weather events. In the local datastore, collection agents receive validated weather

data from a publication agent and ensure cache collections are updated accord-

ingly.

Role of Metric Agents: Metric agents are responsible for receiving valida-

tion reports from publication agents, and updating regional statistics using re-

port data. As mentioned above (§3.4.1.5 Measuring TAF Data Quality and Accu-

racy), validation reports may also be used to certify the data quality of weather

data before entry into the data warehouse [71]. For example, if AFWA requires a

99 percent data quality percentage for the wind speed attribute, and validation

reports show a 92 percent format validation rate, then AFWA or the associated

OWS must analyze invalid forecast reports to find the root cause for the wind

speed validation failures.

3.4.2.4 Transaction Model

The transaction model describes task decomposition and interactions

among objects identified in the TFMS schema and DFD models [13]. This is

analogous to system interaction diagrams. Based on these diagrams and descrip-

72

tions, we can probe for distributed processing opportunities in the system to

maximize computing resource efficiency [15]. This model also provides the basis

for two other issues concerning system design - system test plan and user inter-

face development. The system test plan is designed to aid the validation process

for integration testing while user interface design is primarily derived from the

transaction model decomposition [27].

The primary reason for choosing this design method over use case sce-

nario methods is it captures the same information in a more understandable for-

mat, while also addressing integration testing and user interface design issues as

well, i.e. it ties all high-level aspects of the system together very nicely.

3.4.2.4.1 Task Decomposition

Weather Analyst Management TAF Validation Management TAF Publication Management

TAF Collection Management TAF System Administration

TFMS Level 1 Transaction Frame

Figure 21: TFMS Transaction Model

Figure 21 shows top-level actions for the TFMS distributed system based

on TFMS functional requirements (§3.4.1.2 Functional Description). Figure 22

73

shows further decomposition applied to weather analyst management. Each action

in Figure 22 is refined until object-level interactions are exposed. In this section,

the "submit forecast" action is further decomposed to demonstrate the methodol-

ogy-

Submit Forecast Submit Observation ViewTAF Accuracy Report

View TAF Accuracy Data

TFMS Level 2 Weather Analyst Management Actions

Figure 22: Weather Analyst Management Transaction Model

Figure 23 shows a suitable breakdown for the " submit forecast" transaction.

The diagram shows a complete sequence of operations needed to carry out the

action and the major objects involved with each operation to form the transac-

tion. Figure 23 also serves as one validation test case in the TFMS system test

plan [6 and 27].

74

Initiate Action
(Submit Forecast Control,

Forecast)

+

Return Failure Information
JForecast, Report)

Failed

Receive Forecast
(Submit Forecast Command, Forecast)

Validate Forecast
(Validation Agent, Forecast)

Passed

Publish Forecast
(Publication Agent, Event Service,

Forecast)

Receive Forecast
(Collection Agent, Notification Agent,

Forecasts)

Check Format
(Rule, Format, Forecast)

Determine Categories
(Forecast, Categories)

Update/Check Trend
(Rule, Category, Trend, Forecast)

Update Statistics
(Metric Agent, Statistics)

Publish Report
(Publication Agent, Report)

Receive Report
(Metric Agent, Report)

TFMS Level 3 Submit Forecast Transaction

Figure 23: TFMS Submit Forecast Transaction

This is a very simple, but powerful tool when performing distributed data

analysis [27]. From this simple flowchart, processes uncovered during DFD

modeling (§3.4.2.2 Information Flow) are mapped to objects identified during

TFMS schema definition (§3.4.2.1 TFMS Schema).

3.4.2.4.2 Object-Level Behavior

The object-behavior model further decomposes the task decomposition

model to arrive at object-level method descriptions that perform application logic

[27]. Figure 24 shows the "submit forecast" transaction further decomposed to

the object level for the publication agent. All objects are analyzed in the same

fashion.

75

Forecast Sent

[consumer = nil]/Nohandle
Locating Consumers!!

TFM S Publication Agent Behavior

Figure 24: Publication Agent Behavior

Based on this decomposition, the publication agent reacts to three external

events: overloaded alarm, report, and forecast method invocations. The publica-

tion agent first locates consumers for the particular event. If no consumers are

on-line (consumer = nil), an error is returned to the caller. If consumers are on-

line, the publication agent changes state to publish the forecast, report, or alarm.

One distributed insight into this state diagram is the guard condition for publish-

ing forecasts (consumer = forecast event channel and collection agent). If the

publication operation is communication-intensive (bulk forecast transfers), a fur-

ther decomposition could divide the operation into two private methods: a local

communication operation (collection agent) and a remote communication opera-

tion (forecast event channel). Each operation would be multi-threaded so the

communication load is divided to increase server-side performance and improve

operation execution time [21 and 47].

76

3.4.2.5 Granularity

Determining granularity in a distributed system has a direct impact on

system interface design, performance, and scalability [10,15, and 21]. The TFMS

is centered on validation and distribution of terminal forecasts and observations;

therefore, a fine level of granularity is appropriate for these objects, i.e. object-

level granularity. Currently, passing an object by value is supported in CORBA

version 2.3, but not widely implemented [21]. Since interoperability is always a

major consideration, there are two choices: a structure may be defined in CORBA

IDL to meet necessary functionality for data handling purposes or a reference to

an interface may be used to retrieve data members.

It's very important to define rules for grouping objects and/or compo-

nents into subsystems. In this paper, subsystem, module, and package are used

interchangeably. Cohesion and coupling criteria are used to partition the system

into subsystems, components, or objects capable of autonomous operation [6].

Cohesion Criteria: Objects may be functionally, sequentially, or tempo-

rally grouped into subsystems or components. Functional cohesion is the

strongest criteria for module structuring since it means the objects perform simi-

lar functions in the system, e.g. validation or publication functions. Temporal

cohesion is the weakest module structuring criteria because this indicates that

different objects may execute at the same time (concurrently) and should be con-

77

sidered as separate, autonomous system entities. In some cases, the functional

aspects of the objects may warrant their allocation to the same module.

Coupling Criteria: Coupling refers to dependencies in the distributed sys-

tem. There are many types of coupling [6], but in a distributed system, loose cou-

pling is desired to ensure the autonomy of physical processing nodes, i.e. no sub-

system, component, or object depends upon another system entity to carry out its

function in the system. For example, the forecast publication module publishes

forecasts. If the publication module were designed to have knowledge or depend-

encies of a particular forecast validation module, then the system would quickly

lose its fault tolerance capabilities of simply loading another validation module

to continue operation and improve overall system availability [10]. This simple

scenario also speaks volumes about system flexibility and the dynamic capacity of

the software system in general [8].

The TFMS validation, metric, and publication functions are other candi-

dates for distribution, since rules and statistical operations may be computation-

ally expensive while the publishing operation may be an expensive communica-

tion operation. For instance, to validate a forecast sequentially, the validation

agent checks each weather element using a business rule for each element. If

these business rules should become computationally expensive, then distributed

processing using all available platforms needs to be considered as a solution [15].

Another consideration is bulk validations. If the validation execution time is ac-

78

ceptable for a single forecast, but excessive in the case of ten forecasts, then dis-

tributed processing using a coarser granularity (forecast granularity as opposed

to weather element granularity using individual rules) may be more appropriate.

For finer granularity, validation agents would multithread expensive business

rules and obtain an interface reference on a separate CORBA server to accom-

plish the same rule on a different processor. Another approach would be to im-

plement each weather attribute as a dependent object [72]. A dependent object is

effectively a data wrapper that encapsulates each weather element and applies

specific behavior and rules to that weather element.

For coarser granularity, the validation agent would send forecasts to an-

other validation function for processing on a separate CORBA server. In both

cases, the validation function must be measured and the appropriate processing

granularity determined. Partitioning the TFMS validation function in this man-

ner provides the flexibility to distribute the validation process over any number

of local OWS processor resources (§3.5.2.5 Validation Module).

3.5 Distributed Object System Design

The primary purpose of distributed object system design is to transform

the software requirements specification into an architectural, interface, data, and

procedural design that is traceable to customer's requirements. Other objectives

pertain to software quality and extensibility [5, 6, and 29].

79

Distributed object system design also considers a scalability model,

which separates design and implementation concerns based upon the scale of the

problem we're trying to solve, e.g. publishing forecasts to all OWS regional proc-

essing centers for maximum forecast availability is an enterprise-level problem.

The scalability model helps us decide if we should use a system-provided ser-

vice, e.g. OMG Event Service, or apply a known framework or design pattern to

solve the problem [14]:

1. Global: Interoperability between organizations, e.g. open systems.

2. Enterprise: Interoperability within an organization, e.g. organizational hard-

ware and software standards.

3. System: Interoperability between applications.

4. Subsystem: Developing applications that meet a specific user requirement.

5. Framework: Developing generic solutions of cooperating components that can

be instantiated to solve a specific subsystem design issue.

6. Component: Developing generic solutions of cooperating objects to solve re-

curring problems.

7. Object: Concerned with code reuse more than design reuse.

3.5.1 System Partitioning

System partitioning defines an architectural structure and the relation-

ships among major elements in the software system [6]. As shown in Figure 25,

the validation, publication, and data functions are placed in separate modules

80

that provide clean separation of functionality coupled with a coarse level of

granularity (§3.4.2.5 Granularity), which reduces communications costs [1 and

15]. TFMS system modules (subsystems) are then partitioned along client, busi-

ness, and data boundaries as shown in Figure 25. This partitioning follows an N-

tier modeling methodology [2, 4, 7, and 8]. In the user services layer, weather

analyst functions are grouped into a client module. The business layer contains

forecast validation logic, grouped into a validation module; publication func-

tions, grouped into a publication module; and data classification logic, grouped

into a classification module.

TFMS Oent Services

TFMS dent
Module

"TT-^

Commands. Data

\
\ /
_A ^
Appfcation/vaidatforA
errors are
propagated across
interface boundaries.

/

L

TFMS Business Services

TFMS Delegation
Module

CORBAName
Service

CORBATime
Service

TFMS Vacation
Module

I getCategoryO

| getTimeO

TFMS Pubication
Module Commands. Data

TFMS Cbssification
Module

I Data, Alarm

CORBA Event
Service

TFMS Data Services

TFMS Data
Module

I
Commands, Dat\

I

TFMS Delegation Module

■> (from Bushess Services)

J

Figure 25: TFMS Modular View

It's during the system-partitioning phase that global, enterprise, and sys-

tem design patterns are introduced. The system-level architecture is the endur-

ing structure that survives component modification, evolution, and interopera-

81

bility over the system's lifecycle [14]. Using the CORBA Name, Time, and Event

services to implement application requirements provides reuse at the architec-

tural level while controlling system evolution and complexity. The data layer

contains collection management functions and statistical computation grouped

into a data module. System administration functions are integrated according to

the affected module. Internal design for each module is discussed below. The

delegation module is reused in the business and data layers (§3.5.2.4 Delegation

Module).

3.5.2 System Module Design

Modular design addresses the issues of interface, data, and procedural de-

sign. Task architecture and concurrency issues are also addressed during system

module design. If the module is providing services to many clients, concur-

rent/synchronization issues become a large part of the design effort to improve

throughput [76]. During modular design, design patterns and frameworks are

also considered and applied where appropriate. A key OO principle is very no-

ticeable in distributed object system development: program to an interface, not to

an implementation [13 and 14]. Adhering to this principle ensures clients remain

unaware of specific object types and underlying object implementations. This reduces

dependencies within the system aiding reuse [13].

82

3.5.2.1 Thread Architecture

Thread structuring criteria are used to map threads to individual objects

or groups of objects in the subsystem architecture. Some rules to consider when

specifying the thread architecture [76]:

1. I/O Objects: Objects interacting with I/O devices, e.g. network or disk, are

mapped to a distinct thread.

2. Internal Objects: Periodic, asynchronous and user role objects are mapped to

a distinct thread. Periodic objects that execute in the same time period may

be grouped into the same thread if they're not different priorities, i.e. by tem-

poral cohesion criteria.

3. Cohesion Criteria: Objects meeting control, sequential or temporal cohesion

are mapped or grouped into distinct threads. These usually include con-

trol/command objects, computationally expensive sequential operations, and

periodic operations as mentioned previously.

3.5.2.2 Data Architecture

Data structuring criteria are used to map data stores in the subsystem ar-

chitecture. A few data abstractions to consider [76]:

1. I/O Abstraction Interfaces: Provide I/O interface definitions to encapsulate

device/access details.

2. Data Abstraction Interfaces: Encapsulate sequential, e.g. vectors and lists, and

associative, e.g. maps and sets, container implementations.

83

3. Algorithm Abstraction Interfaces: Encapsulate all application algorithms in

objects to hide algorithm details.

Finally, once the task and data architectures are defined and integrated to

develop the subsystem or component architecture, the interface is defined. The

subsystem or component's interface characterizes the complete set of requests

that can be sent to the module [13]. The rest of this section discusses TFMS de-

sign, module by module using the software requirement specification as input.

An important consideration to any modeling methodology is its comprehensibil-

ity. Too much detail clutters the model, making it incomprehensible [27].

3.5.2.3 Client Module

Figure 26 shows the client module design. The weather analyst communi-

cates with the TFMS distributed system using the CORBA interfaces defined in

the TFMS Delegation module. If an analyst wants to view statistics, schedule sta-

tistical computation, or submit a set of forecasts/observations for validation and

publication, these interfaces characterize a complete set of operations that can be

invoked on an object, component, or module [6].

84

Implements a "Command" ^
design pattern. A control for
each menu option.

Client is push
consumer for
alarms.

"k,

Each specialized control IN
implements the virtual
execute function to
perform a specific action.

<<Abstract>>
MenuCommand

♦executeQ

~^£

«g- instantiates control

Menu

^InitializeQ subscribes to alarms

"^sT

Submit Control Publish Control

\
"V

VaWateControl ViewControl

"V

Schedule Control

\ ̂ AL JL \

<<CORBA Interface>>
IRBusiness

(fromTFMS Delegation Module)

♦submitfjn seq<ForecastData> fs)
*submit(in seq<ObservatbnData> os)
♦vaBdate(in seq<ForecastData> fs)
♦publish(in seq<ForecastData> fs)

*L JL
<<CORBA Interface>>

IRCollectbn
(fromTFMS Delegation Module)

♦add(in seq<FbrecastData> fs)
♦addfin seq<ObservationData> os)
*add(in seq<ValidatbnReport> vr)
♦manaqe(in StatbnData sd)
♦managejin Categon/Data sd)
*view(in strinq query)
*schedule(in string query, in time hour)

<<CORBA Interface>>
Eventchannel

(fromCORBA EventService)

♦connect_consumer()
*connect_supplier()

Figure 26: TFMS Client Module

As shown in Figure 26, the client module is very simple and its functional-

ity is easily traceable back to user requirements (§3.4.1.2 Functional Description).

When the client module initializes, the program connects to the CORBA Event

Channel to subscribe to alarm data. The analyst is then presented with a menu

of options similar to the ones shown in the transaction model. When the ob-

server chooses an option, a specialized menu control is instantiated to execute user

interface logic pertaining to that system action. This is an application of the well-

known command design pattern that removes tight coupling between objects to

reduce object dependencies [6 and 13]. We can easily extend our user interface

by defining new control subclasses to add new window or menu functionality.

85

3.5.2.4 Delegation Module

The TFMS delegation module is shown in Figure 27. The purpose of the

delegation module is to separate CORBA and platform-specific thread code from

business logic. This approach improves physical design, isolates portability

problems and CORBA errors to this module, reduces compile and link times by

limiting CORBA source file dependencies, and limits the need for developers to

be proficient in using a specific CORBA language mapping [21 and 22].

«CORBA Interface»
IRBusiness

^submitfin seq<ForecastData> fs)
♦submitfin5eQ<ObservationData> o$
♦vaEdatetin seq<ForecastData> fs)
*pubfch{in seq<ForecastData> fs)

Initializes application/data serve^
and dispatches requests to
appropriate "Command"
aibcbss.

V I \

/
Imp

#Initialze()

A "Command" subclass for^i ^»
each "incoming" use case.

«CORBA Interface»
IRCo lection

♦add('n seo<ForecastData> fs)
*add(ii seo<Observat"onData> os)
*add("n seq<VaWat"onReport> vr)
♦manaqetin StationData sd)
*manaqe(in CateqoryData sd)
^viewfin stnrtq query)
♦schedule(h strng query, ii time houi l

«CORBA Interface»
Name Service

(fromCORBA NameSnvIce)

♦bhdfin strinq name, h object handle)
*resorve(ii string name) I

registers

Implements a l^i
"Command" pattern.

«Abstracts
Command

*execute()

PubfehCommand

■^

3.
_—dispatches' "

Collection Impl

♦jnJtabeQ

NotfficationAqent

Multithreaded: ^
t hread-per-object/request consumer connection to

SubmitCommandj

"7~
AddCommandl ManaqeCommand

-^r
,/\

T"
ScheduleCommandl

-^r ■v

«CORBA Interfaces-
BventChannel

[fromCORflft EventSctvlce)

^connect consumer^
*connect_suppfe r()

<<Interface>>
WaWation

.(from TFMS.yWdMIgn Module)

♦vaBdate(seo<ForecastData> Ms)
*valWate(seq<ObservattonData> &o:)
♦initialzeO

«Interface»
Pub Beaten

m TFMS Pübfcaton Module)

*publisWsea<ForecastData> &fs)
+publt5hfseQ<ObservationData> &o;)
S>ubfishfseq<VaridationReport> &vr
*pubEsh{seq<AlarmData> &ad)
*m*Bfee()

V \
«Interface»

Kolection
[from TFMS D«i Module)

*add(seq<ForecastData> &fs)
*add(seq<ObservationData> &o<)
*manaqe(seq<StatbnData> &sd'
♦jnitBtzeQ

<< Interface»
IMetric

,(from TFMS OJO Module)

♦updatefin seq<ValdationRepoit> &vr)
*execute(strinq auerv) I
*schedule(stnng query, time hour)
♦initiabeQ

J

Figure 27: TFMS Delegation Module

The module is initialized in either a business or data server mode, further

promoting reuse within the system. Two CORBA IDL interfaces: IRBusiness and

IRCollection are defined to permit this flexible arrangement. A fine level of granu-

larity is implemented by defining CORBA data structures for weather and report

86

data. Defining CORBA sequences for data structures as shown for the "submit"

and "add" overloaded operations supports bulk operation requirements.

To implement CORBA IDL-declared operations, we define a concrete sub-

class that implements the C++ virtual method definitions generated in a header

file by the IDL compiler. The Business_Impl and Collection_Impl classes perform

this function and dispatch a command subclass for each CORBA operation in-

voked. Command subclasses also implement the command design pattern (a.k.a.

coordinator and transaction patterns) and serve as client-processing agents; pro-

viding uniform, consolidated access to a number of TFMS services [13 and 14].

To improve server throughput, command subclasses are multithreaded (§4.2.2.3

Server-Side Performance) [21]. The notification agent is also part of this module,

instantiated by the Collection Jmpl class as a sink for TAF/observation publication

events using CORBA's Event Service. As shown in Figure 27, the delegation

module only communicates with other TFMS module interfaces, so this module

is completely decoupled from other TFMS modules [6,13, and 14].

3.5.2.5 Validation Module

The TFMS validation module is shown in Figure 28. The purpose of the

validation module is to validate forecasts by checking encoding format and com-

paring current forecast categories against the latest weather observation cate-

gory. As Figure 28 shows, rule, format, and trend containers are mapped from

the TFMS schema (§3.4.2.1 TFMS Schema). To obtain maximum reuse, efficiency,

87

and reliability, the validation module uses C++ standard template library (STL)

map and stack containers [9 and 70]. The benefits of using generic components,

e.g. reusability, reliability, reduced development time, are widely known [51 and

70].

Validation Aqent: Obtahs a handle to rules ^
and IPu bleat ton interface when
instantiated.
1. For al rules in Rules, execute rule.
2. Check resufcs.
3. Send alarm/error data back for fated
vaidatbns.
.4. Pubish report, validated weather.

<< Interface >>
IVaidation

*vaidateCseq<ForecastD3ta> &fs)
*vaidate(seq<0bservatbnD3ta> &os)
♦hfcbfeeO

Implements "Evictor"
Design Pattern using
STL stack container
ope rattans.

"fcs, \
J.

Rules, Formats, Trends, and
agent data structures are
baded when the valdatbn
module is intfefeed.

IS,

VaidatbnAgentQueue
%Agents: stack ValdatbnAgent*

Uses STL map L\
container operatbns.

T\

V
VaidattanAgent

%Rutes& -send alarms, reports, weather

«Interface»
IPubKcatbn

(from TTMS PubfcaBon Module)

♦pubfeh(seq<ForecastData> &fs)
*pubfish(5eq<ObservatbnData> &os)
♦pubish(seq<Vaidatbn Report > &vr)
^pubSshfseq<AlarmData> &ad)
♦intfefeeO

%rules: map <string(name), Valdatbn Rule *>

*modify(string key)
♦saveO
+toad()

%name
%Formats8t
%Trends&
%Idassify&

^getNamef)
*setName(strinq name)
*execute(string majcom, string icao, value)

VaSdatbn Rule: Obtains handle to formats, trends, and
IdassifV interface when instantiated.
1. Check weather element format (data quafty).
2. Get cateqory data.
3. Update weather element trend.
4. Check weather element trend.

~L\

♦saveO
♦badO
^updateQ

«Interface >>
Idassify

(from TTMS Classification Module)

*qetCateqory(strinq mafcom + name, value)
*manaqe(CategoryData &cd)
♦hUateO

^Trends : map <string(key), Trend*> Uses STL map ^
container operatbns.

«Data Object»
 Trend

%statbn
%name
%kev
%forecast_value
%f orecast__cateqo ry
%observed„value
%observed_category
%bcked?

♦qetKeyf)
*setKey(strinq statfon, strhq name)
*update(int value, string category)
♦check()
♦bck()
♦unbckO

-get MAJCOM category data-

Figure 28: TFMS Validation Module

The ValidationAgentQueue container holds idle validation agents to reduce

execution time. This is a simple implementation of the evictor design pattern that

reduces the delay involved with creating validation agents for each request. The

88

evictor design pattern also provides memory management benefits, where agents

are evicted from the queue if they're idle too long [21]. The validation, publica-

tion, and data modules all use the evictor pattern to reduce the cumulative object

creation delay throughout the TFMS.

The validation module does have concurrency issues with the trend con-

tainer. When the module receives a set of TAF/observations, all station trends

must be updated prior to checking if the current forecast's weather element is

"out of category" with the current observation. There are two ways to imple-

ment lock granularity in this case: at the container level or at the trend object level.

For container-level locking, the validation agent gets all category update data

from the classification module as a bulk request, obtains a lock on the trend con-

tainer, updates the trends, and then unlocks it. In this case, rules are locked out

until the update is performed and the validation agent unlocks the lock variable

for the container. Starvation is possible in the case of very large bulk validation

requests. Implementing the lock at the object level would require only a few mi-

nor changes. The rule now obtains the category update from the classification

module, obtains a lock on an individual trend object, updates and checks the

weather element, and then unlocks it. In this case, other rules are locked out only

if they try to access a locked trend object. Starvation is very unlikely since the

weather station ICAO identifier is used as part of a unique map key, so a given

TAF/observation update operation will only affect the trend objects for that

89

weather station and element. This design greatly increases application concur-

rency by a factor of the size of the trend container, while keeping lock operation

complexity the same. Figure 28 shows the trend object with the lock and unlock

operation additions to support operation serialization functionality.

3.5.2.6 Publication Module

The TFMS publication module is shown in Figure 29. The purpose of the

publication module is to publish validated weather to meet performance, avail-

ability, and AFW dissemination requirements IAW AFMAN 15-111 [67]. This

module is also responsible for publishing TFMS alarms to the CORBA Event

Channel and validation reports to the local OWS data module.

Since the publication module already uses the CORBA Event Service to

send TAF/observation data to other OWS sites, alarm functionality was moved

from the validation module to improve physical design by removing all CORBA

source file dependencies from the validation module (§3.5.2.4 Delegation Mod-

ule). The publication module also implements a "Strategy" design pattern that

encapsulates a family of algorithms, i.e. primary copy, pipeline, event, making

the experimentation process simply a matter of algorithm selection, as opposed

to changing source code [13].

90

<< Inte rface >>
Publication

*pubfish(seq<R)recastData> &fs)
*publish(seq<ObservationData> &os)
*pubfeh(seq<VafidationReport> &vr)
*pubteh(seq<AlarmData> &ad)
^initiafeeQ

Instantiates the appropriate
algorithm subclass with forecast
data. Implements a "Strategy"
pattern that encapsulates a famfy
of algorithms, making each
interchangeable.

K

Public at ionAgentQueue
%Agents: queue PubfcationAgent*

±
PublicationAqent

JiL
«Abstract»

RepfcationAlgorithm

♦pubRshQ

~K

Pipeine

I
PrimaryCopv

z
<<CORBA Interface»

IRCollectbn
(from TFMS Delegation Module)

*add(in seq<ForecastData> fs)
*add(in seq<ObservattanData> os)
♦add(in seq<VaMationReport> vr)
*manage(in Stat'onData sd)
*manaqe(h CateqoryData sd)
♦viewfin string query)
*schedule(in string query, in time hour)

~l

I
alarms, result data

I

Event

ALJL
«CORBA Interface»

Eventchannel
(from CORBA Event Service)

♦connect_consumer()
*connect_suppSer()

Figure 29: TFMS Publication Module

3.5.2.7 Classification Module

The TFMS classification module is shown in Figure 30. The purpose of the

classification module is to categorize weather attributes IAW defined MAJCOM

category thresholds and return this information to the caller.

91

<<Interface>>
Idassify

^qetCateqoryfstmq maicom + name, value)
*manage(CategoryData &cd)
*hitialize()

A"

VaridationCategories
%map : <string(key), VaWafionCategory*>

*modify(string key)
*save()
♦bad()

OassificattonAgentQueue
%Agents: stack ClassFcat'onAgent^

V
ClassifJcatbnAgent

%ValidatbnCategories&

manages
 ±

ValidatfonCategory
%majcom
%name
%map : <string(l), Threshold*>

♦getKeyO
^setKey(string majcom, string name)

This is basically the same as nested map containers. L^
e.g. map<majcom + windspeed, map<'A', 'B',...,Threshold*>>
where the key is majcom + weather element name.

consists of

Threshold
%min
%max

^checkfint element)
*setThreshold(int min, int max)

Figure 30: TFMS Classification Module

As shown in Figure 30, classification agents hold a reference to all defined

categorical information and since category data is static, no data consistency is-

sues exist with this module.

3.5.2.8 Data Module

Figure 31 shows the data module. The data module provides the neces-

sary performance and availability required for TFMS customers to retrieve

timely forecast, observation, and statistical information. The delegation module is

reused to dispatch multithreaded data layer CORBA operations. Physical design

is improved by removing all CORBA source file dependencies from the data

module (§3.5.2.4 Delegation Module) [21 and 22]. When the data module initial-

92

izes, forecast, observation, statistic, and weather station containers form a cache

collection data object layer [32]. The TFMS schema is almost directly mapped

from the software specification, e.g. a weather station contains a set of forecasts,

observations, and statistics.

The collection and metric agents are mediators; controlling and coordinat-

ing object interaction to the cache collection [13]. The notification agent (§3.5.2.4

Delegation Module) is a colleague of the collection and metric agents, performing

a push data delivery service between the CORBA Event Service and the ICollec-

tion and IMetric interfaces. In this way, colleagues are decoupled from each other

and may be directly reused in other applications [13].

Since potentially many customers may require access to read-only forecast,

observation, and statistic cache collections, search queries are a prime candidate

for multithreaded application and load balanced distribution for increased avail-

ability if the collection module is replicated within an OWS. This functionality is

easily added to the delegation module by using a static variable in the view

command class to keep track of client connections (number of active queries).

When a certain client threshold is reached, we can redirect the client using a loca-

tion agent (not shown), which maintains handles to replicated collection modules

on other local processing machines.

93

«Interface:» >
ICo lection

*add(seq< Forecast Data> &fs)
♦add(seq<ObservatbnData> &os)
*manaqe(seq<StatbnData> &sd)
♦hftbfeeQ

«Interface>>
IMetric

^updatefin seq<VaUationReport> &vr)
^executefstmq query)
^schedule (string query, time hour)
♦htafeef)

CollectbnAgentQueue
%Agents: stack ColecttonAgent'

 !
manages
 ±

ColecttonAgent
%Statbns&

updates station weather
^ updates statcn statetks

^Map : <stnng(icao), Weatherstation *>

*qetStatbn(string icao)
♦saveO
JoadO
*modify(string icao)

manages *

FormatElernent
%name
%vald_count
%bvaid_count

WeatherStatton
%majcom
%umt
%icao
%processinq_hub
%bbck_ station, number
%qeoqraphtoal_reg ton
%a'rcraft_type
%weapon_type
%clmate_type
%runwav_heading
%Forecasts&
%Observations&
%Stat'stics&

manages

%Format: <strinqfname), FormatElement*>
^Accuracy : <string(key), AccuracyElement*>
%bcked?

%map: <string(key), Forecast*>

♦qetObfectO
♦setObiectO
♦saveO
+toad()

contains
 ¥

%map : <string(key), Observation*

♦qetObiectO
♦setObjectf)
♦saved
♦badQ

<<Abstract»
Weather

%fcao : string(4)
%mafcom
%messaqe_b : {METAR, SPECS, TAP}
•►modifier : {AMD, COR, RTD}
%whd_direction : natural
%wnd_speed : natural
%wind_qusts: natural
%visfofty: natural
%siqnficant„weather: string()
%ctoud_laver: string()
^remarks: string()
%key

^qetfcaoO
♦qetKeyO
*setKey(string icao, string date, stnng time)

£

%name
^category
%date
%hour
4*ey
%forecast?
%chanqe_qroup : string(6)
%matrix: array[2] [2]

AccuracyElement

Forecast Observation |

tissue date : Strtiqfö)
%issue_tme :{0..23}
%month : {1..12>
%quarter:{1..4>
%year: Stmq(4)
%chanqe_qroup : stmg(6;
%c rosswind

%date_time : UTC + "Z"
%njnway_visuaLrange |

|

♦qetKevO
♦setKeyf string name, string category, time date, time hour)
*update()

"Adapter" deskjn pattern. Useful for ^
wrapping bqacy/data mismatches into an
object-based system.

qetObiectfquery/read strinq)
for each tuple / delmfced file entry

bad(createOb}ect(tuple or fie data))
add to Colectton

Adapter

Relational Table

Figure 31: TFMS Data Module

94

The adapter pattern wraps data stored as relational tuples or files into data

layer objects in cache collections [41 and 43]. This pattern is only required if the

underlying datastore is not an object-oriented database management system

(OODBMS). By wrapping forecasts in this manner, we do introduce a perform-

ance penalty when building the object containers or flushing a given object from

cache to disk. This penalty is commonly referred to as impedance mismatch and

surfaces whenever we have to map one language to another [44].

The IMetric interface provides an update operation for bulk validation re-

ports. Concurrency issues do exist with the format element and accuracy ele-

ment containers. When the subsystem receives a set of TAF/observations, all

validation elements must be updated. Once again, there are two ways to imple-

ment lock granularity: at the container level or at the validation element object

level. In this case, updating the validation elements makes more sense at the

container level, due to the query possibilities of the analyst. In other words, data

consistency/dependency issues exist between validation elements, whereas in

the trend object, there were no inter-object dependencies (§3.5.2.5 Validation

Module). Accuracy elements use a unique key composed of four properties: 1)

name, e.g. wind speed, 2) category, e.g. A, 3) date, e.g. 19991215, and 4) hour.

Format elements use a name key, e.g. wind speed, as they simply track the num-

ber of valid and invalid entries for a given weather attribute.

95

3.5.3 System Performance, Evolution, and Reliability Considera-
tions

System performance is determined by a number of factors (§4.2 Perform-

ance Benchmarks). Some issues such as impedance mismatch, processor speed,

and network latency are unavoidable. Items such as using threads for computa-

tionally expensive operations, event loops for communication intensive opera-

tions, and pre-creation facilities such as the evictor design pattern to reduce sys-

tem-processing delay are used where the technique seemed most appropriate.

Other design patterns are used primarily for easy system extension. The

overloaded execute method of each derived command (or control) class carries

out functions required by a specific CORBA operation (making all calls to the

appropriate objects). In this way, each command object decouples objects that

invoke operations from objects that implement the behavior, greatly adding to

reuse of system objects. Also, it's very easy to add new command objects with-

out recompiling the client since the delegation layer isolates the CORBA classes

from the implementation language [6].

Parameterized types also aid system reuse and reliability as well. For the

TFMS, the primary opportunity for reuse was container implementations. As

mentioned above, the C++ STL provides many different data structures for the

application developer, e.g. vector, list, stack, map, multi-map, etc. [9]. Using the

C++ STL increases application reliability and software reuse while reducing cod-

ing and debugging time since its containers and algorithms are fully tested and

96

debugged [51 and 70]. The map container was primarily chosen for order one

lookup performance, since the keys were all unique, and the stack was chosen for

its ability to easily determine unused system agents for better memory manage-

ment facilities [21].

Implementing very course granularity does generally possess the same dis-

advantages as most centralized approaches: 1) single point of failure and 2) poor

scalability [12]. In addition, adding or deleting interface operations may mean

IDL, client, and server recompilation, so comprehensive interface definition is not

only important, it's critical - even if operations aren't fully supported yet. The

main disadvantage with fine granularity is increased communication within the

distributed system, so there are certainly tradeoffs to consider, e.g. distributing n

rules over n machines, as opposed to n rules on one machine.

3.6 Summary

In this chapter, an OO design methodology is employed to develop the

TFMS. This methodology shows how the TFMS is partitioned into a distributed

system and addresses the issues of forecast validation, publication, and metric

processing functions. The OO lifecycle chosen is based on distributed OO data

systems design and shows how TFMS requirements are developed and trans-

formed across the lifecycle [27].

97

IV. Distributed System Prototyping

On the other hand, we cannot ignore efficiency. - Jon Bentley

4.1 Introduction

An important aspect of distributed system design involves performance

measurement and determining the effectiveness of the design. This involves un-

derstanding performance benchmarks, the operating environment, and the ap-

plication's functional requirements to determine if the software system effec-

tively implements what the customer requested (§3.4.1.2 Functional Description).

All factors affecting the experimental process are described, then a client/server

measurement model is examined to uncover appropriate measurement points

within the system. Experimental parameters are also defined along with system

measurements.

4.2 Performance Benchmarks

A benchmark is a performance testing application that captures the data

processing characteristics for a class of applications [10]. No single metric has the

ability to convey computer system performance for all applications. System per-

formance significantly varies from one problem domain to another and distrib-

uted object system performance is no exception. Domain-specific metrics specify

a synthetic workload that characterize a typical application for a given problem

domain [54]. The performance of this workload using various hardware plat-

98

forms, distributed object system implementations, or alternative algorithms pro-

vides valuable insight into the relative performance of each alternative as it re-

lates to the problem domain. For a benchmark to be useful, we must keep the

following factors in mind [54]:

1. Relevance: Must measure performance relative to typical operations within

the problem domain.

2. Portability: Easy to implement on different architectures.

3. Scalability: Should apply to small and large systems alike, i.e. the benchmark

itself should be scaleable.

4. Simplicity: The benchmark must be understandable or it may lack credibility.

This section considers performance metrics used to evaluate and deter-

mine relative performance of the TFMS application. This research is applicable

to a wide range of applications and is written with the intent of providing insight

into the metric definition process, specifically addressing the measurements re-

quired or that should be considered for distributed object system development.

4.2.1 Basic Performance Metrics

Execution time and floating-point operations (FLOP) are frequently used

to measure a program's computational workload.

99

4.2.1.1 Execution Time

Program execution time is the total time taken to execute a program and is

measured as wallclock, response, or elapsed time [55]. Execution time depends

upon many factors. Table 3 summarizes major factors affecting execution time.

Table 3: Factors Affecting Execution Time

Execution Time Factors
Algorithm An algorithm's asymptotic performance has a huge impact on

execution time e.g. a bubble sort O (N2) versus a quick sort O
(N Log N).

Data Structure How data is structured affects processing time e.g. a simple
data type takes much less time to marshal than a complex con-

structed type like a nested structure [21].
Program Data Certain programs are immune to input data values e.g. an NT-

point Fast Fourier transform, but others are greatly affected by
input data values, e.g. comparison-based sorts such as quick-
sort, whose best or worst case time greatly depends upon the

partitioning of the input sequence [15].
Operating Platform Machine/Instruction set architecture, operating system and

version, compiler and version, memory hierarchy (multiple
cache level, memory, and disk bandwidth), and application

use (dedicated or timeshare) all affect execution time [10 and
55].

Programming Language Low-level or high-level languages, compiler optimizations,
and code optimizations can greatly affect execution time e.g. In
C++, inlining friend and member functions, and removing un-
needed destructor and copy constructor/assignment defini-

tions greatly decreases execution time [52].
Interconnection Network Network characteristics (shared/switched,

LAN/MAN/WAN), network bandwidth, communication la-
tency, and delays caused by buffering interconnection device

mismatches e.g. high-speed to low-speed and fragmenta-
tion/reassembly operations all greatly affect a program's exe-

cution time [10 and 11].

4.2.1.2 Floating-Point Operations

In applications where numerical calculations dominate, a metric fre-

quently used is floating-point operations. The unit of measurement is the num-

100

ber of floating-point operations per second (FLOPS). For a meaningful metric,

rules must be followed for counting floating-point operations [10]:

Table 4: Some FLOP Counting Rules

Rule Number of Floating-point Operations Comment
X = 1.2+ 2.4* 1.22-1.11; 3 Addition, multiplication,

and subtraction count as
one FLOP each.

X = Y; 1 Isolated assignment.
If (X > Y) X * 2.2; 2 Comparison counted as

one FLOP.
X = (float) Y * 2.0; 2 Typecast counted as one

FLOP.
X = Z / 3.21 * sqrt (Y); 9 Division or square root

counted as four FLOPS.
X = sin (Y) * exp (Z); 17 Sine, exponential, etc.

counted as eight FLOPS.

4.2.1.3 Combinations of Basic Metrics

Execution time and floating-point operations can also be used in a mean-

ingful way when benchmarking different design alternatives, e.g. testing if multi-

threading or event-based server design is more suitable for a given computa-

tional load (§4.2.2.3 Server-Side Performance). In this report, a benchmarking

methodology is implemented where a certain FLOP workload is applied to a

server, and response time is measured to determine the computational workload

where a threaded approach may be more appropriate than an event-based server

implementation for a given number of clients.

4.2.2 CORBA Performance Metrics

In distributed computing, whether you're designing business applications

using distributed objects or allocating processors to solve a computationally-

101

expensive numerical problem, you must know the communication costs associ-

ated with the application. This means you must know the cost of sending remote

messages, which is determined by two factors: latency and marshaling rate. One

point to always remember is that results may vary widely depending on the op-

erating environment used for measurements. For measurements to be meaning-

ful, developers should always create a prototype of the deployment environment

to mitigate all confounding factors [49].

4.2.2.1 Call Latency

Call latency is the minimum communication cost you incur when invoking

a remote operation. The cheapest CORBA message is one that has no parameters

and returns no result using the CORBA IDL oneway keyword. One-way CORBA

operations use best-effort delivery semantics and must follow three rules: 1) must

have a void return type, 2) must not contain out or inout parameters, and 3) must

not contain a "raises" expression [21].

Measuring call latency determines a fundamental design limit for the ORB

implementation you're comparing or using. If the application requires more re-

mote message invocations than the ORB is capable of delivering, either a better

performing ORB must be found or the application must be optimized to meet

this limitation. For example, suppose you measure the call latency for two com-

mercial vendor ORBs. One vendor's ORB has a call latency of 1 millisecond (ms)

and the other vendor's ORB a 2 ms call latency. Your application is optimized,

102

but still requires 600 remote calls per second (sec). Considering the two ORBs

above, you can expect a maximum call dispatch rate of 1000-calls/sec for one

ORB implementation, while the other delivers a 500-calls/sec maximum dispatch

rate. Based on the call latency benchmark, you'd most likely choose the 1000-

calls/sec ORB implementation for your distributed object system.

Another important consideration is hardware utilization. We gain insight

into hardware utilization by determining the efficiency of a particular operation,

where efficiency is a measure of the fraction of time that a processor is usefully

employed [15]. Mathematically, efficiency is defined by [15]:

E = S/p

Where S is the speedup ratio of serial run time to parallel run time and p is

the number of processors.

In a client/ server model (§4.3.3 Client/Server Measurement Model), the

number of processors is one and efficiency effectively becomes equal to the

speedup ratio. If efficiency is a design issue, we can determine the amount of

server work needed to obtain a target efficiency by using the call latency bench-

mark and measuring the time for the cheapest local procedure call (LPC), i.e. local

latency. In this way, we can use the standard speedup equation to determine

where to place certain operations within the distributed system. For example,

consider our cheapest local operation costs 1 microsecond, while our ORB's call

latency costs 1 msec. From the standard speedup equation, S = 0.001, so our re-

103

mote calls are 1000 times slower. If target efficiency is 30 percent or above, then

the operation workload must roughly exceed 0.5 msec to properly utilize the re-

mote machine and mitigate communication costs (~0.5msec/0.5msec + 1msec =

-33% efficiency).

4.2.2.2 Marshaling Rate

The marshaling rate is the speed in which an ORB can transmit and re-

ceive data over the network. Marshaling performance depends upon the data

type being transmitted over the network [21]. Simple types typically marshal

fastest because they're usually a simple block copy into the ORB's transmit

buffer. Marshaling complex data types and object references usually takes much

more time because the ORB must do more work at run time collecting data from

different memory locations, and then copying this data into the transmit buffer.

When determining an application's marshaling rate, it's important to use

the actual data types used by the application in its typical operating environment.

Designers should determine the time to marshal, unmarshal, dispatch, and ser-

vice each remote call for future use in performance calculations and measure-

ments [49].

4.2.2.3 Server-Side Performance

Because CORBA is server-centric, most scalability and performance im-

provements are realized on the server-side [21]. Multithreading is certainly at

104

the top of a server developer's to-do list, but event-based approaches can also be

used as an alternative to multithreaded server applications. In this section, the

two approaches are briefly discussed.

Multithreaded server applications can provide many benefits like simpli-

fied program design, improved throughput, true concurrency on multiprocessor

hardware platforms, and improved response time enforced by the operating sys-

tem scheduler [21 and 56]. To realize these benefits though, multithreading is

practically applied toward four areas: 1) offloading time-consuming tasks from

the main thread, 2) providing application scalability for SMP systems, 3) sharing

computing resources fairly, and 4) driving independent players in simulations

[50]. Server applications are supposed to operate efficiently during peak usage

periods, when many active clients require simultaneous service. Given this envi-

ronment, a single-threaded implementation would make a poor choice if certain

requests require disk or network I/O, since these requests would block the

server application for extended periods of time, starving other client requests [11,

12, and 56]. If the server application only processes short-duration requests

though, a single-threaded implementation may be the right choice to minimize

application complexity [47].

Multithreaded ORB implementations have a wide variety of options

available to handle requests. Table 5 provides a summary of the most popular

ORB thread architectures. Once the ORB core dispatches a client request to a

105

portable object adapter (POA) where the target object is located, the POA thread-

ing policy takes over [21]. A POA can have a SINGLE_THREAD_MODEL or

ORB_CTRL_MODEL value for its thread policy. When a POA has the

SINGLE_THREAD_MODEL value set, all servant invocations are serialized. For

a multithreaded ORB, when a POA has the ORB_CTRL_MODEL value set, this

implies that a POA is allowed to dispatch multiple requests concurrently, but it

says nothing about the thread model used to handle these requests [21]. As Ta-

ble 5 shows, there are advantages and disadvantages with each thread model, so

application requirements, client access patterns, the operating environment, and

performance testing become important factors when choosing a vendor's ORB

implementation.

Table 5: ORB Multithreading Architecture Summary [56]

Architecture Comments Advantages Disadvantages
Thread-Per-Request Handles each cli-

ent request as a
separate thread of

control.

Straightforward to
implement.

Useful for long-
duration requests.

Consumes many
OS resources for

many clients.
Inefficient for
short-duration

workloads - ex-
pensive thread
creation costs.

Thread-Per-Connection Variation of thread
per request. Each
client connection

has a separate
thread of control.

Straightforward to
implement.

Useful for long-
duration requests.

Does not load
balance effec-

tively. Can over-
utilize connec-

tion.
Thread-Per-Servant Associates a thread

with each servant
(object instance).

Useful to minimize
rework of single-

threaded servants.

Does not load
balance effec-

tively. Can over-
utilize servant.

Thread-Pool Variation of thread
per request.

Amortizes thread
creation costs.

Must dedicate
resources.

106

Event-based servers are a design approach that offers many advantages:

1) no complicated resource locking, 2) no data corruption, and 3) minimal over-

head [47]. Replacing all blocking I/O with event notification and distributed

callback mechanisms increases server performance for short duration events, but

event-based servers quickly lose these performance advantages when events take

too long to process [47 and 50]. Event-based services are appropriate in distrib-

uted environments where communication-oriented tasks such as web services or

transferring small amounts of data are prevalent. Measuring an ORB's Event

Loop throughput and comparing to a suitable multithreaded implementation

would greatly aid our decision-making process for implementing server-side

functionality for a particular operation.

4.3 Experimental Design

One point previously mentioned (§4.2.2 CORBA Performance Metrics),

concerns the issue that an experimental result may vary widely depending on the

operating environment (§5.3.2 Experimental Environment) and deployment

model (§5.3.1 N-Tier Topologies) used for measurements. For measurements to

be meaningful, these conditions must be recorded, e.g. a processor's clock rate

alone inversely affects the machine's execution time since CPU Execution Time =

Program Clock Cycles + Clock Rate [55].

107

4.3.1 Factors

To obtain unbiased results, the following factors are recorded for repro-

ducibility purposes [45]. These factors can greatly impact the anticipated results

from experimental reproduction or could possibly invalidate experimental data.

Every attempt to reduce or eliminate the impact of these factors (§4.3.2 Mitiga-

tion of Factors) is performed to ensure experimental integrity.

1. High Resolution Global Time: The clocks on two different machines may not

be correlated to a centralized time source. If global time is not achieved, cer-

tain measurements cannot be accurately performed.

2. Machine Utilization: Business applications typically share processor time

with other applications, i.e. applications use timesharing.

3. Network Utilization: While applications typically share processor time with

other applications, machines must share network bandwidth with other ma-

chines.

4. LAN/WAN Interface Buffering: These experiments are performed using a

100 Mbps Fast Ethernet internetwork. The overhead in processing data pack-

ets for different communication protocols and rates is not considered.

5. Data Security Implementation: These experiments are performed with no se-

curity methods. The overhead in processing secure data packets along with

any encryption mechanisms is not considered.

108

6. MICO IDL Compiler: MICO's IDL compiler and library support improves

with each new release, and future versions may greatly affect the time to

marshal and unmarshal data. Other IDL compilers may contain optimiza-

tions, which may decrease data packing and unpacking time as well.

7. Measurement Overhead: Obviously, a certain amount of overhead is incurred

with the measurement activity.

8. Time Constraints: This research report has a deadline. There is not enough

time to try every possible optimization and measure/ analyze the results.

9. Software Portability: The code should run with minimal effort on different

operating platforms, e.g. all flavors of Unix (Linux, Sun, Solaris, etc.), mainly

for reproduction of experiments and platform comparison purposes [48].

Sometimes, writing portable code may sacrifice program performance.

4.3.2 Mitigation of Factors

Mitigation of factors (§4.3.1 Factors) attempts to improve the documenta-

tion of the experiments and reduces or eliminates the effects of each factor,

greatly contributing to overall experiment validity.

1. High Resolution Global Time: All machines are members of the same Win-

dows 2000 domain model. Immediately before experiment execution, ma-

chines will synchronize their clocks with the Domain Controller (DC).

109

2. Machine Utilization: Machine utilization is checked prior to experiment exe-

cution. Only measurement applications, e.g. Windows 2000 performance

monitor, are running besides the experiment.

3. Network Utilization: Network utilization is checked prior to experiment exe-

cution. Every attempt is made to use the operating environment while net-

work utilization is minimal.

4. MICOIDL Compiler: MICO's IDL compiler is the latest version.

5. Measurement Overhead: The wallclock time required to take a time meas-

urement is recorded and subtracted from the experiment's time.

6. Software Portability: All CORBA code is written to the CORBA 2.3 specifica-

tion with no proprietary hooks. Platform-specific Win32 API thread func-

tionality is encapsulated in a single ThreadPool class (§5.4.1.3.1 Threaded),

which isolates platform modifications to a single class.

4.3.3 Clieni/Server Measurement Model

Building a client/server measurement model to measure remote operation

costs is a fairly straightforward process. Figure 32 shows experimental meas-

urement points we could use in a typical client/server interaction. For each ex-

periment, a table like Table 6 is used to record measurement data. For example,

let Tmarshai be the time to marshal a particular data type on the client. To compute

this time, we would use Tmarshai = T2 - Ti, where T2 is the time at measurement

point two and Ti is the time at measurement point one.

110

Address Space A I
Processor 1 I

Address Space B
Processor 2

Client Server

Figure 32: Client/Server Measurement Model [49]

Table 6: Remote Operation Costs

Measurement Point Comment Operation 1,... ..., Operation
N

0 Client Execution time
1 Before client marshal
2 After client marshal
3 Before server unmarshal
4 After server unmarshal
5 Before server marshal
6 After server marshal
7 Before client unmarshal
8 After client unmarshal
9 Server Execution time

10 Bytes transferred to server
11 Bytes transferred to client

Network Utilization
(Point 10)

Bandwidth Used

Network Utilization
(Point 11)

Bandwidth Used

Total Operation Time
Total Bytes Transferred

4.3.4 Parameters

Table 7 presents the parameters and values used to conduct TFMS ex-

periments. Each parameter is described below:

111

1. Data Type: Three data types are used in the experiments. A simple double

type, a Forecast structure, and a sequence of Forecasts are used to measure

marshaling rate and normal versus bulk operation experiments.

2. Number of Forecasts: A range of one to 1000 forecasts is used in the replica-

tion and validation experiments. Bulk compared to normal operation per-

formance is considered as well.

3. FLOP (§4.2.1.2 Floating-Point Operations): Workload applied to a single func-

tion or transaction. Workload ranges from 1000 to 10,000,000 FLOPS.

4. Number of clients: A range of one to five clients is used for testing server-side

performance. A client may be a thread or lightweight process.

5. Number of business/collection servers: A range of one to seven servers is

used to test both small and large distributed configurations.

Table 7: Experiment Parameters

Parameter Values
Data Type double, forecast, sequence<forecast>

Number of Forecasts 1,10,100, 200,300, 400, 500,1000
FLOPS mo3, io*io3, loono3, i*io6, io*io6

Number of Clients 1, 2,3,4,5
Number of Servers 1,2,3,4,5,6,7

Replication Algorithm CORBA Event Service, Pipeline, Primary Copy
Operation Normal, Bulk

6. Replication Algorithm: CORBA Event Service, Pipeline, and Primary Copy

algorithm execution times are compared to determine which is most suitable

for the TFMS.

112

7. Operation: Normal versus bulk operations is compared to determine which is

most appropriate for a given transaction.

4.3.5 Measurements

The experiments performed in this report follow a specially constructed

test problem methodology [45]. The following metrics are used for the TFMS ex-

periments:

1. Execution Time (§4.2.1.1 Execution Time): The time elapsed between the be-

ginning of the program to the last node's program execution [15].

2. FLOPS (§4.2.1.2 Floating-Point Operations): The number of floating-point op-

erations executed by a single function or transaction per unit time.

3. Throughput (§4.2.1.3 Combinations of Basic Metrics): Number of jobs

(FLOPS, forecasts, or transactions) processed per unit time [10].

4. Network Utilization: Amount of bandwidth used as a percent of total band-

width when executing inter-site experiments (Replication).

4.3.6 Measurement Confidence Level

To determine the number of measurements required for each experiment,

ten sample measurements are taken to determine a mean and standard devia-

tion. Once this information is computed, these values are used to determine the

number of measurements required for a confidence level of 96 percent possessing

113

an accuracy of one percent from the mean. Confidence limits for a population

mean are given by [61]:

X ± (Zc * S)/nV2

Where X is the sample mean, Zc is the confidence level, S is the sample's

standard deviation, and n is the number of samples. The quantity (Zc * S)/nV2 is

also equal to the mean times the required accuracy p, so this becomes:

X * p = (Zc * S)/nV2

Therefore, the number of measurements required for an experiment can

be found using the following formula (Zc = 2.05 for 96% confidence level [61]):

n= [(2.05 *S)/(X* 0.01)]2

4.4 Summary

An important aspect of distributed system design involves performance

measurement and determining the effectiveness of the design. This chapter dis-

cusses basic and distributed system performance benchmarks, while also ad-

dressing experimental design of the TFMS. All factors affecting the TFMS ex-

perimental process are outlined. A client/server measurement model is exam-

ined to uncover appropriate measurement points within the TFMS system. Fi-

nally all experimental parameters and measurements are defined outlined.

114

V. Distributed System Implementation

Programming is understanding. - Kristen Nygaard

5.1 Introduction

In the previous chapter, a design methodology was used to map business

requirements to a software system. Software system implementation and ex-

perimentation details are presented in this chapter. The implementation phase is

used to map the software system to an operating environment. TFMS experi-

ment implementation details, experimental operating environment, and transac-

tion characteristics are explained and documented. Various distributed topolo-

gies along with their inherent component placement tradeoffs are also examined.

As previously noted (§1.7 Summary), the TFMS is a prototype CORBA applica-

tion developed to quantify the impact of specific design decisions in a distributed

environment.

5.2 Software Development Environment

The development tools used in this research are the MICO CORBA 2.3-

compliant C++ implementation and Microsoft Visual Studio 6.0 Enterprise Edi-

tion. The primary reasons for choosing these tools is convenience, familiarity,

and lack of time to pursue other CORBA implementations (§4.3.1 Factors). Many

CORBA vendors and CORBA-aware CASE tools exist. Most of these resources

are available on the WWW [77].

115

5.2.1 MICO

MICO (stands for MICO is CORBA) is a freely available and fully compli-

ant C++ implementation of CORBA version 2.3 [34]. MICO is compatible with a

great number of operating platforms, using the native C++ compiler in most

cases. To implement a CORBA application, CORBA IDL is specified and com-

piled using the MICO IDL compiler. MICO generates the C++ mapping in the

form of header and body files containing all the necessary CORBA code required

for application implementation. Application developers must implement the vir-

tual method definitions in these generated files to bind the CORBA interface

definitions to C++ objects.

5.2.2 Microsoft Visual Studio 6.0 - Enterprise Edition

Microsoft Visual Studio 6.0 Enterprise edition includes Visual Modeler, a

graphical OO design tool, and Visual C++, Microsoft's C++ development envi-

ronment. Once the MICO IDL compiler compiles CORBA IDL into C++ header

and body files, MICO libraries are configured in the VC++ development envi-

ronment and application development continues as a normal VC++ project [34].

No compiler optimizations are applied to these experiments. Visual Modeler is

used to create the TFMS object model and is the source of several figures shown

in the report. Visual modeler is also used to generate skeleton code (class headers,

constructors, method declarations, etc.) for C++ classes.

116

5.3 Deployment

Deployment maps the software architecture to a specific operating envi-

ronment. Within the operating environment, there usually exists a variety of

ways to configure distributed components.

5.3.1 N-Tier Topologies

When deploying a distributed application, there are many ways to ar-

range application components onto physical machines. The logical N-tier model

shown in Figure 33 may be arranged in many different ways depending on ap-

plication and performance requirements.

Presentation Layer

Business Layer

Data Layer

Presentation Layer:
This layer establishes the
user interface and handles
user input and code to display
application data.

Business Layer:
This layer applies business rules
and logic required to perform
application processing requirements.

Data Layer:
This layer is responsible for
storing persistant application
data, usually using a commercial DBMS.
This layer is sometimes subdivided
into two layers: an object cache and
data storage layer.

Figure 33: N-Tier Logical Model

In this section, five physical implementations are discussed: 1) Two-Tier

implementations with thick clients, 2) Two-Tier implementations with thick serv-

ers, 3) Three-Tier implementations with thin clients, 4) Three-Tier implementa-

tions with thick clients, and 5) N-Tier implementations.

117

Presentation Layer

Business Layer

Data Layer

Data

Figure 34: Two-Tier Thick Client

A common method for deploying a client/server application is shown in

Figure 34. This two-tier implementation uses thick 3 clients, where all business

and presentation logic is physically executed on client machines. In this imple-

mentation, the server acts as a traditional database server. A primary advantage

with the thick client implementation is that user interface tools supporting this

model are powerful and well established; e.g. Visual Basic is in its sixth major

version [62]. A disadvantage with this implementation is that deploying all busi-

ness logic on the client generally means more communication overhead because

data must be moved to the client to apply business logic. Another disadvantage

is that changes to business logic require recompilation of all clients.

3 The term "FAT" or "Thick" generally refers to what system entity possesses the majority of the application logic.

118

Presentation Layer

Data Layer

Figure 35: Two-Tier Thick Server

In a two-tier thick server implementation, business logic is physically exe-

cuted on the server and is generally written as stored procedures and triggers

within the database. For example, in the TPC-C benchmarks published for Mi-

crosoft SQL Server, the core transaction logic is coded as stored procedures in the

server [2]. The major advantage of a thick server implementation is performance.

Business logic runs in the same address space as database code and is tightly in-

tegrated with the database search engine, so data is not moved or copied before

it's operated on, therefore rninirnizing network traffic. The main disadvantage of

this implementation concerns scalability - application scalability is tied to the

hardware platform where the server resides [7 and 8].

119

Win32 Client

Business Layer Data Layer Presentation Layer

Business Layer

CZ JI5}

Data

Figure 36: Three-Tier Thick Client

The key distinction of a three-tier implementation is the existence of a

processing boundary; between the data, business, and presentation layers; this

processing boundary may be physical or logical, i.e. different physical machines

or different address spaces on the same physical machine [7]. Transaction proc-

essing and object transaction monitors (TPM and OTM respectively) such as Mi-

crosoft's MTS and BE A System's Tuxedo/M3 products use this topology to pro-

vide process, transaction, communications, and load balancing services for large

transaction-oriented, e.g. financial, distributed environments [7].

The three-tier thick client implementation in Figure 36 shows business

logic residing in a client address space, while other business logic resides in a

separate address space on a different physical machine. If the business logic is

computationally expensive, requiring a lot of processor time or physical mem-

ory, it's usually advantageous to locate these functions on one or more physically

separate machines to minimize resource contention, increase processing effi-

120

ciency, and decrease overall application execution time [15]. The potential scal-

ability gain may be offset by the additional communication cost involved with

moving data to middle-tier machines, so care must be taken when physically par-

titioning the application (§4.2.2 CORBA Performance Metrics). Another dimen-

sion of application scalability is added by three-tier applications accessing dis-

tributed databases, i.e. databases physically partitioned across multiple machines

(§2.5.1 Architectures). Partitioning databases in this manner, however, intro-

duces enormous complexities into the application and is not a widespread prac-

tice in industry today [62].

Web Browser Presentation Layer

Business Layer

Data Layer

Data

Figure 37: Three-Tier Thin Client

Figure 37 shows the topology for a three-tier thin client, i.e. Internet im-

plementation. Internet implementations typically execute both business and

presentation services using a Web server in the middle layer. Some products,

e.g. WebLogic's Tengah architecture, execute the business logic on the Web

server as well, i.e. in the same address space, thus avoiding the additional call

121

overhead associated with crossing an additional process boundary [63]. One key

advantage of Internet implementations is that anybody with a browser can access

these applications. Standard Web browsers provide all required client function-

ality. Application evolution and upgrades are easily managed as well, since an

update to the Web server automatically updates all clients. This is in sharp con-

trast to managing thick clients, where upgrades may affect application code at

many 4 clients.

Presentation Layer Data Layer

c

Data

Business Layer Data Layer

£-- —z

Data

Figure 38: N-Tier Component Model

Figure 38 shows a topology where we lose the distinction of numbering

the layers into a three-tier processing environment. In the N-tier topology, we

start using white page (OMG Naming service), yellow page (OMG Trader and

Query Services) directories, and smart component (agent) interactions as the ba-

sis for our application's behavior [8 and 14]. The same advan-

tages/disadvantages discussed above exist with the N-tier topology as well, but

4 The use of the word "many" here denotes the typical Internet user population.

122

with N-tier distributed applications, the component is the primary autonomous

entity in the system [17].

5.3.2 Experimental Environment

The AFIT Bimodal cluster consists of 21 PCs: four PII-333MHz, seven PII-

400Mhz, one PII-450MHz, eight PIII-600MHz, and one dual PIII-550MHz sym-

metrical multiprocessors (SMP). All hardware platforms possess at least 128 MB

of memory, 512K level one cache, and 100Mbps PCI network interface cards. The

Pile of PCs (PPCs) can boot Red Hat 6.0 Linux or Microsoft Windows 2000 (bi-

modal), and both platforms support CORBA-based application development us-

ing MICO [34]. Windows 2000, beta release 3 is used for all experiments. The

cluster interconnection network currently uses two 100Mbps, 24-port Intel Ex-

press Fast Ethernet switches uplinked to a six-port Intel Gigabit switch.

5.3.3 Component Implementation

This section describes component implementation for TFMS experimenta-

tion. Functionality and interaction for the TFMS name server, test generator,

TFMS business servers, and TFMS collection servers are described.

5.3.3.1 CORBA Name Server

A CORBA Name server provides a mapping of server names to object ref-

erences, similar to the Internet Domain Name Service, which maps Internet do-

main names to IP addresses [21]. A name binding is a name-to-reference associa-

123

tion and a name context is an associative object that stores name bindings, typi-

cally implemented as a lookup table. The CORBA Naming Service is used in this

research to advertise business and collection servers, solving the problem of how

TFMS components get object references at runtime. Figure 39 shows a typical

CORBA lookup operation the test generator performs to obtain a TFMS business

server reference. A TFMS business server obtains collection server handles using

the same sequence of operations.

2. Resolve name

object = root->resolve(Business1);

Test Generator
TFMS Name Server

(Businessl, Reference)

3. Narrow to a business server Interface
Business_var Businessl;
Businessl = Business_narrow(object);

4. Invoke operation

Business1->validateTAF(TAF);

1. Create a binding

root->bind(Business1, Reference)

TFMS Business Server
(Businessl)

Figure 39: Resolving TFMS Component Names

5.3.3.2 Test Generator

The test generator simulates multiple clients in the TFMS, offering the ex-

perimenter various options for testing different functions, e.g. ORB benchmarks

or publication algorithm experiments in the distributed system. The test genera-

tor invokes CORBA operations on business and collection servers after obtaining

interface references from the TFMS Name Server.

124

5.3.3.3 Business Server

The business server implements TFMS middle-tier services needed for

TAF validation and publication. Business servers add themselves to the distrib-

uted system by registering their interfaces with the TFMS name server (§5.3.3.1

CORBA Name Server). All forecasts submitted for validation and publication

use the TFMS business server. Business servers invoke CORBA operations on ei-

ther business (validation function distribution) or collection (publication experi-

ments) servers by obtaining interface references during runtime from the TFMS

Name Server.

5.3.3.4 Collection Server

The collection server implements the data object layer associated with the

data tier of the TFMS N-tier topology. The collection server maintains cache col-

lections needed to provide high availability and performance [12, 41, and 43].

Collection servers add themselves to the distributed system by registering their

interfaces with the TFMS name server (§5.3.3.1 CORBA Name Server).

5.3.4 Component Deployment

Figure 40 shows one TFMS deployment using the AFIT PPCs (§5.3.2 Ex-

perimental Environment). This deployment maps the test generator, name,

business, and collection servers onto four distinct nodes (separate physical ma-

chines) running the Microsoft Windows 2000 operating system. A number of dif-

125

ferent test configurations are executed by deploying the appropriate number of

business and collection servers, then selecting the appropriate test option from

the test generator menu. This methodology is a convenient way to enable repro-

ducibility or to perform cross-platform comparison [48].

1 Gbps - Ethernet

100Mbps - Ethernet

Windows 2000, Beta Release 3
Pentium III 600 Mhz

372 MB RAM
100 Mbps PCI NIC

3

Test Generator

400Mbps - Ethernet
a

I IUÜ
Server

■ <

Windows 2000, Beta Release 3
Pentium III Dual 550 Mhz

372 MB RAM
1 Gbps PCI NIC

Name/Threaded Server

Windows 2000, Beta Release 3
Pentium III 600 Mhz

372 MB RAM
^ 100 Mbps PCI NIC

fcrera
Server

Business Servers

Figure 40: TFMS Deployment Diagram

ä c=ma
Server

Collection Servers

5.4 Experiments

This section addresses the objectives of each experiment and the steps

taken to implement the experiment. Data collection for each experiment is im-

plemented by using C++ STL containers and algorithms encapsulated in an Av-

erage class. The Average class implementation is shown in Figure 41. Clients are

required to collect measurements in a STL vector container. The collect function

takes a reference to the client's measurement vector and a file name. Measure-

126

ments are summed using the STL accumulate algorithm and divided by the size

of the times vector to calculate the average. The sum, number of measurements,

average, and all raw data are then saved to the file name provided by the client.

All experiments in this research gather measurements non-intrusively in mem-

ory and then use this methodology to save experimental results. The number of

iterations for experiment execution is determined using sample means and stan-

dard deviations from pilot transactions (§4.3.6 Measurement Confidence Level).

Although some transactions required far fewer iterations, the minimum number

of iterations for all experiments is the worst-case value of 100.

#include <numeric>
^include <fstream>
#include "Aver age. h"

Aver age:: Aver age0 { }

void Average: :collect(vector<double> &d, char* s)
{

times = d;
afstream outfile(s, ios_base::app);

// Accumulate results
double sum = accumulate(tim es. beging), times. endO, O.CT);

//Compute average
double average = sum/times.sizeO;

// S ave to file
outiile. s etfi^io s_base:: fix e d, io s_base:: flo atfiel d);
outfile « "Sum: " « sum « endl;
outiile << "Measurements: " « times.size0 « endl;
outfile. setfl^ios_base:: fixed, ios_base::floatfield);
outfile << "Average: " « average « endl;

outfile.setfl^ios_base::fixed, ios_base::floatfield);
outfile« "Data: ";
typedef vector< double>:: const_iterator T;
for (T t=times.begi»Q; t!=times.end();++t)
{

outfile.setfl^ios_base: :fixe d, ios_base:: flo atfiel d);
outfile << *t<< ","// dereference value at iterator t

}
outfile « "\n" « endl;

Figure 41: Average Class

127

5.4.1 ORB Benchmark Transactions

The objective of the ORB benchmark experiments is to determine a par-

ticular ORB's design limitations to aid the distributed object system engineering

process (§4.2.2 CORBA Performance Metrics). Four ORB benchmarks are im-

plemented: call latency, marshaling rate, server-side performance, and name

server performance. Figure 42 graphically depicts ORB benchmark transactions.

5.4.1.1 Call Latency

The objective of this experiment is to determine the cost of a MICO ORB

remote and local call. These measurements are required to compute relative effi-

ciency for component placement within the distributed system (§4.2.2.1 Call La-

tency).

Presentation Layer

MenuCommand

♦executeQ

Ä"
— -->

calls'

/ \
/ \ ThreadPool

BenchMarkControl

Executes each ORB N
benchmark transaction.

\
\
A

ClientControl

Business Layer

<<CORBA Interface>>
Benchmark

♦oneway void caJRateO
♦void marshalDoublefin double d)
♦void marshalTAF(in TAFdata t)
♦void marshalBulkfln sequence<TAFdata> st)
♦void singlethread(in unsigned long workload)
♦void multithread(in unsigned bng worktoad)

Benchmarkjmpl

v \
Each CORBA operation ^
implemented by Benchmark_impl.

calls calls \
MultrrhreadCommand

H.
Sing leThre ad Command

Figure 42: Call, Marshaling Rate, and Server Performance Transactions

The call latency transaction is implemented using the following steps:

128

1. Prerequisites: Two machines are chosen for this test. The machine's clocks

are synchronized with the Windows 2000 Domain Controller (DC). One ma-

chine hosts the benchmark server process and a remote machine hosts the test

generator. The benchmark server binds and the test generator resolves inter-

face handles using the TFMS name server upon startup.

2. The experimenter selects the ORB benchmark test when prompted by the test

generator.

3. As shown in Figure 42, the test generator instantiates a BenchmarkControl ob-

ject to control experiment execution.

4. The BenchmarkControl object records a transaction start time, and then calls

the benchmark interface callRate operation on the remote machine.

5. The BenchmarkControl object records a transaction stop time.

6. The total time to complete the transaction is calculated by the BenchmarkCon-

trol object and saved to its measurement vector in memory.

7. The BenchmarkControl object repeats steps four through six 100 times to obtain

measurement confidence before saving all test results as discussed previously

(§5.4 Experiments).

8. These steps are repeated for a benchmark server process loaded on the same

physical machine to determine the LPC dispatch rate.

129

5.4.1.2 Marshaling Rate

The objective of this experiment is to determine the rate that the MICO

ORB can transmit and receive TFMS data types over the distributed network

(§4.2.2.2 Marshaling Rate). Since the data-marshaling rate depends upon the

data type being transmitted over the network, three marshaling rate transactions

are executed [21]. The first transaction is for a double-precision floating-point

number. The second transaction is for a TAF data structure. The last transaction

concerns bulk TAF data structure transfers using the OMG IDL sequence type.

All marshaling rate transactions implement steps one through seven of the call

latency transaction, with the appropriate operation invoked in step four.

5.4.1.3 Server-Side Performance

In this experiment, the CORBA Event Loop (main thread) throughput is

measured and compared to a thread-per-request multithreaded implementation

(§4.2.2.3 Server-Side Performance). The experiment's objective is to determine

the server workload where a multithreaded ORB implementation improves

overall server throughput and response time for multiple clients.

5.4.1.3.1 Threaded

The threaded transaction uses the TFMS delegation layer (§3.5.2.4 Delega-

tion Module) and is implemented using the following steps:

130

1. Prerequisites: Two machines are chosen for this test. The machine's clocks

are synchronized with the Windows 2000 DC. A benchmark server and test

generator process is loaded on different physical machines. The TFMS name

server provides runtime location transparency.

2. As shown in Figure 42, the test generator instantiates a BenchmarkControl ob-

ject as in previous tests. The BenchmarkControl object then instantiates a Cli-

entControl object with a handle to the benchmark server process.

3. The BenchmarkControl records a transaction start time. Note: The ClientControl

object inherits thread functionality from the ThreadPool object, which encapsu-

lates all TFMS Win32 thread functionality. Figure 43 shows the interface for

the ThreadPool object.

Ändude <windows.h>

dass ThreadPool
{
public:

Thread PoolO;
-ThreadPool 0;
static DWORD WINAPIThreaded(LPVOID);
void CreateRunningThreads(int number);
void CreateSuspendedThreads(int number);
void StartThread(y/starts suspended thread from pool
void StarfThreadsO;// starts entire thread pool
void WaitForThreadsExitO//normally called after CreateSuspendedThreads

// to control thread execution

protected:
HANDLE »„Threads;
DWORD Jlhreadld;
int _number,
virtual DWORD ThreadFunctionO;// subclasses must override
void AddThreadToPoolO;// maintains pool size

Figure 43: Thread Pool Class

4. The BenchmarkControl object calls the ThreadPool CreateRunningThreads mem-

ber function, which creates a pool of 1,2,3,4, and 5 threads (clients).

131

5. Each thread executes the overridden ClientControl ThreadFunction member

function which calls the benchmark interface multithread operation and passes

a 1,10,100,1000, and 10000 (thousands of FLOPS) workload parameter to the

server.

6. The benchmark server dispatches a MultiThreadCommand object to perform

the client's requested computation. The MultiThreadCommand object also in-

herits thread functionality from ThreadPool, but calls CreateRunningThreads(l)

in its constructor to start one thread immediately to perform the FLOP com-

putation. A call to WaitForThreadsExit in its destructor ensures clean resource

deallocation upon termination.

7. The BenchmarkControl object waits for all client threads to complete by calling

the ThreadPool WaitForThreadsExit member function.

8. The total time to complete the transaction is calculated by the BenchmarkCon-

trol object and saved to its measurement vector in memory.

9. The BenchmarkControl object repeats steps four through seven 100 times to ob-

tain measurement confidence before saving all test results (§5.4 Experiments).

5.4.1.3.2 Event Loop

The Event Loop transaction is implemented in exactly the same manner

using a single-threaded server implementation. A SingleThreadCommand object is

dispatched for each request, but this class uses the ORB's main thread (Event

Loop) to execute a requested client's computation. The SingleThreadCommand

132

does not execute in its own thread of control as the MultiThreadCommand object

does in the multi-threaded experiment.

5.4.1.4 Name Server Performance

Name Server performance tests the effect of name binding and resolution

as the number of name context bindings increases from one to 32,000.

5.4.2 Publication Transaction

The publication experiment considers replication algorithms suitable to

perform the TFMS forecast replication function. Characteristics: 1) forecasts are

validated at the originating OWS, so validated forecasts are treated as read-only

data and 2) forecasts are replicated to all OWS and equivalent centers to meet

performance and availability requirements for TFMS customers. Two replication

algorithms are tested: 1) CORBA Event Service and 2) primary copy.

In the OMG Event Service, suppliers produce events and consumers re-

ceive events. Both suppliers and consumers connect to an event channel. The

event channel is central to the event service and conveys events between suppli-

ers and consumers without requiring suppliers and consumers to have knowl-

edge of one another [21]. Four models support event delivery: canonical push,

canonical pull, and two hybrid push/pull or pull/push models.

133

gSmH^ftPiaBMoWel

<<COR8A Inl«rfic«>>
CvttnLChltihhfti

ficatton Agents IX
lection Modul«)

Notificat
(Co lli

Figure 44: Canonical Push Model

Figure 44 is a representation of the canonical push model that maps to the

distributed characteristics as listed above. In the canonical push model, publica-

tion agents (suppliers) push events to the event channel. The event channel

pushes these events in turn to notification agents (consumers).

In the primary copy algorithm shown in Figure 45, a particular publica-

tion agent serves as the primary server for forecasts entered and validated in their

region. The publication agent serves as the coordinator and must have knowledge

of notification agents or collection modules (depending on implementation) to

replicate forecasts to them. The publication agent is multi-threaded to improve

performance.

134

Primary Gopy Replication Algorithm

PublicationAgent
<<CORBA Interfece>>

CollectionService

Publication agent
(Bushess Module) 3

Figure 45: Primary Copy Algorithm

An alternative algorithm is shown in Figure 46, where the replication is

performed in tree-like fashion. Each publication agent sends forecasts to only a

few other OWS centers (its children), who then send forecasts to its children and

so forth. This forms a hierarchical pipeline distribution pattern where knowl-

edge of other notification agents is kept to a minimum.

Pipetned (Heirarchical) Repfcation

NotificationAgent NotficationAgent NotificatiaiAgent

PubtationAgent
«CORBA Interface»

CotectjonService

Notification Agents ^
(Collection Module)

Publication agent t^
(Business Module) NotficationAgent

->■

NoticatjonAggit NotificationAgent

Figure 46: Pipelined Publication

135

The objective of this experiment is to determine which replication algo-

rithm is suitable for TFMS forecast data based on minimum communication time

and maximum flexibility. Publication transactions involve these steps:

1. Prerequisites: Up to eight machines are chosen for this test. The machine's

clocks are synchronized with the Windows 2000 DC. The test generator and

one business server are loaded on one machine; and 3, 5, and 7 collection

servers are loaded on different physical machines. The collection and busi-

ness servers all bind to the TFMS name server on startup.

2. The test generator instantiates a PublishControl object.

3. The PublishControl object records a transaction start time, and then calls the

business server's publish method sending a sequence of 1, 10, 100, and 1000

forecasts as shown in Figure 47.

4. The business server instantiates a PublishCommand object, passing it the fore-

cast data and algorithm to perform.

5. The PublishCommand object calls the publication module's publish method,

passing along the forecast data and algorithm.

6. If the algorithm is primary copy, the collection server's add method is called

with the sequence of forecast data. The collection server instantiates a Forecast

object for each forecast then inserts the object in the cache collection to com-

plete the transaction.

136

Presentation Layer

MenuCommand

♦executeQ

~K

cafe
/

Publsh Control

Executes each publish ^
transaction.

Business Layer

«CORBA Interface >>
KBusiness

♦submitfin seq<ForecastData> fs)
*submit(in seq<ObservatbnData> os)
♦vaidatefin seq<ForecastData> fs)
*pubish(in seq<ForecastData> fs)
7T

Business_Impl

^IntabeQ
—dispatches-

PubishCommand

~y
cals

JL.
<<Interface»

Publication

♦pub5sh(seq<ForecastData> &fs)
*publish(seq<ObservatbnData> &os)
*publsh(seq<ValidationReport> &vr)
*pubish(seq<AlarmData> &ad)
♦intializeO

V
<<Abstract>>

ReplcatJonAlgorthm

♦publshQ

Event
PninaryCopy

T
Pipeline

produces

<<CORBA Interface>>
 EventChannel

*connect_consumer()
*connect_suppfer()

Data Layer

«CORBA Interface>>
IRColectbn

♦add(in seq<ForecastData> fs)
♦add(ln seq<ObservationData> os)
♦addfin seq<VaWattanReport> vr)
♦manaqefjn StatbnData sd)
*manage(in CategoryData sd)
*view(in string query)
♦schedule(in string query, in time hour)

Figure 47: Publication Transactions

7. If the algorithm is event channel, the sequence of forecast data is published

using the CORBA Event Channel. A NotificationAgent receives the sequence

of forecast data using the Event Channel, then calls the add method for inser-

tion as in the previous step.

8. The total time to complete the transaction is calculated by the PublishControl

object and written to a file upon test completion. The PublishControl object

137

repeats this sequence 100 times to obtain measurement confidence before re-

turning control back to the experimenter.

5.4.3 Validation Transaction

Figure 48 shows the validation transaction. The objective of this experi-

ment is to determine the execution time and efficiency for forecast validation us-

ing single forecasts, then bulk validation requests of 10,100, and 1000 forecasts.

The forecast validation function is then distributed over 2, 3, 4, and 5 processors

to determine if the TFMS validation function will benefit from distributed proc-

essing methods.

Presentation Layer

MenuCommand

^executeQ

7\

ValidateControl

T

Executes each validate ^
transaction.

Business Layer

«CORBA Interface>>
IRBusiness

*submit(in seq<ForecastData> fs)
*submit(in seq<ObservatbnData> os)
*validate(in seq<ForecastData> fs)
*publish(in seq<ForecastData> fs)

77

Business_Impl

^InitializeQ

I
I

dispatches

I
 y

ValidateCommand

Figure 48: Validation Transaction

The validation transaction is implemented using the following steps:

138

1. Prerequisites: Six machines are chosen for this test. The machine's clocks are

synchronized with the Windows 2000 DC. One test generator and five busi-

ness servers are loaded on different physical machines. The business servers

all bind to the TFMS name server on startup.

2. The experimenter selects the validation test when prompted by the test gen-

erator.

3. As shown in Figure 48, the test generator instantiates a ValidateControl object.

The test generator creates and synchronizes 1, 2, 3, 4, or 5 threaded Validate-

Control objects as validation control agents. Each ValidateControl object is in-

stantiated with a handle to a business server process.

4. Once all threads are created and synchronized, the test generator records a

transaction start time and then releases the thread barrier. Each ValidateCon-

trol object calls the IRBusiness interface validate operation and passes the

server 1,10,100, or 1000 forecasts.

5. The total time to complete all validation requests is calculated by the test gen-

erator and written to a file upon test completion. The test generator repeats

this sequence 100 times to obtain measurement confidence before returning

control back to the experimenter.

5.4.4 Submit Transaction

Integration testing involves testing TFMS module interfaces to make sure

they actually can communicate with each other without losing data or sacrificing

139

system functionality [6]. System testing involves functional, load, and perform-

ance tests of the integrated TFMS distributed software system to ensure customer

requirements have been effectively met [76]. In this research, one effectiveness

transaction is implemented: the submit transaction (§3.4.2.4 Transaction Model).

Figure 49 shows the submit transaction. The objective of this experiment

is to determine the execution time for submitting forecasts for validation, publi-

cation, and data collection within an OWS regional processing center. As with

the validation experiment, single forecasts, then bulk update operations of 10,

100, and 1000 forecasts are tested. The validation function is distributed over 1,

3, and 5 processors to determine if distributed processing is appropriate within

an OWS site.

The submit transaction is implemented using the following steps:

1. Prerequisites: Seven machines are chosen for this test. The machine's clocks

are synchronized with the Windows 2000 DC. One test generator, one collec-

tion server, and five business servers are loaded on different physical ma-

chines. The collection and business servers all bind to the TFMS name server

on startup.

2. The experimenter selects the integration test when prompted by the test gen-

erator.

3. As shown in Figure 49, the test generator instantiates a SubmitControl object.

The SubmitControl object creates and synchronizes 1, 3, or 5 threaded Submit-

140

Thread objects as update control agents. Each SubmitThread object is provided

a handle to a business server process.

Presentation Layer

MenuCommand

♦executeQ

~K

y
y

Submit Control

Executes each submt t^
transaction.

Business Layer

«CORBA Interface»
 IRBusiness

*submit(in seq<ForecastData> fs)
*submit(h seq<ObservationData> os)
♦valdatefin seq<ForecastData> fs)
*pubbh(in seq<ForecastData> fs)
TV

Business Impl

^InMafeeQ
—d'spatches-

SubmitCommand

~y~
y

j£_
«Interface»

IVaHatbn

*validate(seq<ForecastData> &fs)
♦validate(seq<ObservattanData> &os)
*iiitialze()

«Interface»
IPubfcatbn

♦publish(seq<ForecastData> &fs)
♦pubish(seq<ObservatbnData> &os)
♦pubish(seq<ValidatbnReport> &vr)
♦pubfeh(seq<AlarmData> Sad)
*initiafee()

Data Layer

«CORBA Interface»
IRColectbn

♦addfin seq<ForecastData> fs)
*add(h seq<ObservatbnData> os)
♦add(h seq<VaBdatbnReport> vr)
♦manaqefln StatbnData sd)
♦manaqe(in CateqoryData sd)
♦vfewfln strhq query)
♦schedule(in string query, in time hour)

T

Figure 49: Submit Transaction

4. Each SubmitControl object calls the IRBusiness interface submit operation and

passes the server 1,10,100, or 1000 forecasts for entry into the TFMS distrib-

uted system.

5. Once validated, the validation module publishes the forecasts using the Event

Channel as previously discussed.

6. The total time to complete all update operations is calculated by the test gen-

erator and written to a file upon test completion. The test generator repeats

141

this sequence 100 times to obtain measurement confidence before returning

control back to the experimenter.

5.5 Summary

In this chapter, the distributed TFMS implementation details are discussed

in great detail. Both experimental operating environment and transaction char-

acteristics are presented and documented. The N-tier topology used to test the

TFMS is also shown and implementation issues concerning various distributed

topologies along with their inherent component placement tradeoffs are also ex-

plained.

142

VI. Collected Data Analysis

The purpose of computing is insight, not numbers. - R.W. Hamming

6.1 Introduction

In this chapter, results based on experimental design and implementation

are presented and discussed (§4.3 Experimental Design, §5.4 Experiments).

CORBA benchmark transaction results are shown and the impact of measuring

call dispatch rate, marshaling rate, server-side throughput, and Name Server per-

formance is discussed in the context of overall distributed system design. Fore-

cast publication and validation results are presented and the efficacy of flexible

system design is addressed in the context of federating these services within the

distributed TFMS [21].

6.2 ORB Experiments

The objective of the call latency experiment is to determine the cost of a

MICO ORB remote call relative to a local call in the same address space. These

measurements enable relative efficiency to be computed to aid component

placement decisions within a particular operating environment (§5.3.2 Experi-

mental Environment). The dispatch rate that a particular ORB can deliver sets a

fundamental design limit on a distributed application [21].

Figures 50 and 51 show a remote call latency of 0.000088 seconds and a lo-

cal call latency of 0.00000081 seconds, which correspond to maximum call dis-

143

patch rates of 11,364 calls/sec for the MICO ORB and 1,234,568 calls/sec for local

calls. These results reflect the fact that a remote call using the MICO ORB is 100

times more expensive than a local call.

Call Latency
S

ec
on

ds

0.0001 -|

.UUUUÖ

.uuuuo

.UUUU't

.uuuuz

u
Remote Local

Call Type 0.000088 0.00000081

Figure 50: Remote and Local Procedure Call Latency

Call Dispatch Rate

1500000 i
T

■D
5 *[r\rtr\r\r\r\

ill118
O IUUUUUU u
Q>
jo
V)

T= ouuuuu
O

n U
Remote Local

Call Type 11363.63636 1 234567.901

Figure 51: Remote and Local Procedure Call Rates

The Relative Efficiency (RE) for a parameterless remote operation in this

experimental environment is given by (§4.2.2.1 Call Latency):

RE~= Operation runtime/ (0.000088 + Operation runtime)

144

The objective of the marshaling rate experiments is to determine the cost

of transmitting and receiving various data types used within the TFMS experi-

mental environment (§5.3.2 Experimental Environment). These measurements

enable a designer to determine the most efficient way to pass data within a given

distributed environment. The dispatch rates for various data types communi-

cated in the distributed system also serve as fundamental design limits for a par-

ticular ORB.

Marshaling Latency

V)
■o c
o
ü
a
to

0.08

0.06

0.04

0.02

0
Double Forecast Seq<10> Seq<100> Seq<1000

Data Type I 0.00334 | 0.0036 | 0.00361 | 0.00771 | 0.05599

Data Type

Figure 52: MICO ORB Marshaling Latency

Figures 52 and 53 shows the latency and dispatch rates associated with

marshaling double, single Forecast, 10 Forecast sequence, 100 Forecast sequence,

and 1000 Forecast sequence data types. Latency and dispatch rates are fairly

consistent for the double, single Forecast, and 10 Forecast sequence data types,

but latency noticeably increases and the corresponding dispatch rates noticeably

decrease for larger data types.

145

Marshaling Rate

■o
c
o
o
a
v>
j»
75
O

400-

300 -

200 -

100 -

n -

^M ßsn

^B ■■■■ KMUX&I u
Double Forecast Seq<10> Seq<100> Seq<1000

Data Type 299.4012 277.77778 277.00831 129.70169 17.860332

Data Type

Figure 53: MICO ORB Marshaling Rates

These results follow from using an Ethernet network topology (§4.3.1 Fac-

tors, §5.3.2 Experimental Environment). An Ethernet frame can transmit a

maximum of 1500 bytes of data [10]. Using the C++ sizeof operator, a TFMS

Forecast data type is 108 bytes and a MICO sequence data type is 16 bytes. A10

Forecast sequence requires 1096 data bytes, so this easily fits within one Ethernet

frame and does not cause increased latency due to data fragmentation as indi-

cated by the 100 or 1000 Forecast sequence results. To find the sequence size or

multiple of this size, which maximizes data transmission efficiency, knowledge

of the network topology and data characteristics, is required. Since the Ethernet

data frame consists of a 1500 byte maximum, a MICO sequence type is 16 bytes,

and a TFMS Forecast is 108 bytes, (1500 - 16)/108 or a 13 Forecast sequence

makes the most use of the given network topology.

146

The objective of comparing a single-threaded with a thread-per-request

server implementation is to determine the point where multithreading an appli-

cation results in improved client response time and throughput (§4.2.2.3 Server-

Side Performance). These measurements enable a designer to determine if a mul-

tithreaded approach improves performance for a particular operation or module

within a given distributed environment.

Server Response Time - 5 Clients

2
1.5 -

1 -
0.5 -

0 -

*

L
C
o r
o
0) 1/ (/)

T
KFLOP

i3
KFLOP

100
KFLOP

1
MFLOP

10
MFLOP

Singlethreaded 0.01853 0.02063 0.04036 0.23757 2.20782

Multithreaded 0.04997 0.04547 0.04878 0.16946 1.44374

■Singlethreaded
• Multithreaded

Workload

Figure 54: Server Response Time Comparison - 5 Clients

Figures 54 and 55 shows the response time and throughput for 1,10,100,

1000, and 10000 KFLOP workloads executed on a dual PHI 550Mhz machine with

256MB of memory. The workload that fully utilizes the server is determined by

computing the efficiency of the operation. Using the remote call latency meas-

urement of 0.000088 seconds to compute relative efficiency, Table 8 shows that a

single-threaded server is underutilized for the 10 KFLOP workload, but is fully

utilized for the 1 MFLOP workload!

147

Table 8: Workload Efficiencies

Workload Execution Time Efficiency
10 KFLOP 0.00047 0.84

100 KFLOP 0.00455 0.98
1 MFLOP 0.0454 0.998

Server Throughput - 5 Clients

© w
CO
a.
O

8000

6000

4000

2000

0

Singlethreaded

Multithreaded

1 KFLOP

53.9665

10
KFLOP

484.731

I I
I Singlethreaded
I Multithreaded

100
KFLOP

2477.7

MFLOP

4209.29

10
MFLOP

Workload

Figure 55: Server Throughput Comparison - 5 Clients

Figures 54 and 55 support this analysis where it's clear that multithread-

ing the server decreases response time and increases overall throughput as work-

loads increase above 100 KFLOP. These results follow from using a symmetrical

processor, i.e. a higher degree of machine scalability, where the multi-threaded

application scales better with the additional processor. This improvement is due

to true concurrency, where threads are executing at the same time on different

processors.

The purpose of OMG Naming Service tests is to determine if name bind-

ing and resolution latency is dependent on the number of bindings in a single

name context as the name bindings increases from one to 32,000. This test helps

148

designers determine the impact and cost of binding and resolving CORBA object

references to a given vendor's Naming Service implementation.

MICO Name Server Performance

■o c
o u
CD

0.81

075 —m m ft—-A——*—- ■#

f)7
• 1 1 ■ §-""

V.I
1 4,000 8,000 32,000

Bind 0.741 0.743 0.745 0.756

Resolve 0.729 0.728 0.732 0.744

-♦-Bind

-»-Resolve

Number of Bindings

Figure 56: MICO Name Server Performance

As Figure 56 illustrates, the MICO naming service implementation shows

no dramatic increase in name binding or resolution latency as the number of

name bindings increases. This indicates that binding and resolution latency is

not dependent on the number of name bindings. Measurement variation for the

experiment is 0.1 percent.

6.3 Publication Experiments

The objective of TFMS publication experiments is to determine a suitable

replication algorithm to disseminate TFMS weather data, based on minimum

communication time and maximum flexibility. First, the effect of call overhead is in-

vestigated and its impact on TFMS distributed system design is shown. Figure

57 shows the cost of sending 1,10, and 100 singular forecasts as compared to a

149

bulk transfer of equal size. The publication results for a single forecast start off

equal, but larger forecast transfers result in excessive communication costs asso-

ciated with the marshaling latency for a single forecast (§6.2 ORB Experiments).

These results confirm the importance of designing remote interface operations

with bulk data transfer support.

Primary Copy - Effect of Message Reduction

M
■o c o o a
V)

Call Per Forecast

Bulk Data Transfer

0.11252

0.1267

ICall Per Forecast
I Bulk Data Transfer

Number of Forecasts

Figure 57: Effect of Message Reduction

The primary copy and the MICO OMG Event Service publication execu-

tion times for 1,10, and 100 forecasts are shown in Figures 58 and 59. The num-

ber of collection servers (receiving sites) ranged from one to seven. The primary

copy and Event Service algorithm used one business server to publish Forecasts

to collection servers.

150

Primary Copy Algorithm - Bulk Transfers

2.5 -|

2 -

1.5 -

1 -

0.5 -

0 -

JK.
M

XI ^ c o u /
w S>

^ ..■■■-■ rfj.'jU^ j^i^f

i 3 5 7

1 Forecast 0 21027 oisi 017237 029926

10 Forecasts 01267 0 1936 02596 0 33562

10 0 Forecasts 0 29796 0B3028 1£3593 2 1343

-■—1 Forecast

* 10 Forecasts

-*—100 Forecasts

Number of Collection Modules

Figure 58: Primary Copy Bulk Data Transfers -1,10,100 Forecasts

CORBA (MICO) Event Service - Bulk
Transfers

(A
■o
C,

0.4 -

0.2 -

0 -

_—36——
o
o
o

V)

"

£_^ =£>-=■ =£-= __£,
1 3 5 7

1 Forecast 0.041 0.04096 0.04087 0.04287

10 Forecasts 0.05769 0.05769 0.05769 0.06771

100 Forecasts 0.24698 0.28695 0.28734 0.47063

1 Forecast

Ä—10 Forecasts

*—100 Forecasts

Number of Collection Modules

Figure 59: MICO Event Service Bulk Data Transfers -1,10,100 Forecasts

As shown in Figure 58 and 60, the primary copy execution times increased

linearly with the number of forecasts and collection servers. The MICO Event

Service, shown in Figures 59 and 61, displays the lowest communication time

and exhibits problem-size scalability when publishing all forecast data sizes to 1,

3, or 5 collection sites. However, publishing 100 or 1000 forecasts to seven collec-

tion sites does place a noticeable load on the publication event channel. If using

151

an Event Service, it's important to test its fan-out capacity, which typically means

to further stress the channel by increasing event occurrence or size (forecasts)

and consumer size (collection sites). The MICO Event Service is scalable for all

forecast sizes up to five collection sites, but larger data sizes of 100 and 1000 fore-

casts stress the event channel when additional consumers subscribe for publica-

tion events. Figures 59 and 61 show this behavior for these larger data and con-

sumer sizes.

Primary Copy Algorithm - Bulk Transfers

£\J -

/*
II)

■a

n in
^y

O
0)
w ^

*s
1 3 5 7

[1000 Forecasts 2.17907 7.70653 12.26248 18.76274

•1000 Forecasts

Number of Collection Modules

Figure 60: Primary Copy Bulk Data Transfers -1000 Forecasts

CORBA (MICO) Event Service - Bulk
Transfers

7.5 -|

5 -

2.5 -

0 -

(A
■o
c
o
o
a
tn

1 3 5 7

|l000 Forecasts 2.98092 3.66427 2.85262 7.05572

■1000 Forecasts

Number of Collection Modules

Figure 61: MICO Event Service Bulk Data Transfers -1000 Forecasts

152

As stated previously (§5.4.2 Publication Transaction), the primary copy

algorithm requires knowledge of collection server names in order to obtain

module references from the TFMS Name server. While the use of a name server

does provide location independence by resolving references at runtime, the

Event Service has the advantage of completely decoupling publishers from con-

sumers, adding to business and collection module autonomy [12 and 21].

6.4 Validation Experiments

The objective of forecast validation experiments is to determine the execu-

tion time for forecast validation using single forecasts, then bulk validation re-

quests of 10,100, and 1000 forecasts on a single machine. The validation function

is then distributed over 2, 3, 4, and 5 processors to determine the benefit of dis-

tributed processing, if any. As discussed previously (§3.4.2.5 Granularity), indi-

vidual validation rules may be distributed, or the entire module itself. This ex-

periment considered distribution of the validation module, which requires 0.0044

seconds to validate one forecast.

Figures 62 and 64 show the execution times for validating 1,10,100, and

1000 forecasts using 1, 2, 3, 4, or 5 validation modules. An important aspect of

distributed processing is scalability, or the ability to maintain efficiency as the

problem size and number of processors increase [15]. Figures 63 and 65 show the

corresponding efficiency for Figures 62 and 64.

153

Efficiency is given by:

E = Ts/pTp

Where Ts is the serial execution time, p is the number of processors, and

Tp is the parallel execution time [14]. Tp is further decomposed into a computa-

tional (Ts) and overhead (To) component. Marshaling latency is part of the over-

head component in this equation.

Forecast Validation -Coarse Distribution

0.5 -I

0.4 -

0.3 -

0.2 -
0.1 -

0 -

(0
•a
c
o \
a
W "~~~p$|

^r~~""""""~"^'"~'*" v„^r^._

1 2 3 4 5

1 Forecast 0.01052 0.01032 0.01553 0.01707 0.10787

10 Forecasts 0.04737 0.04908 0.03004 0.02754 0.0287!

100 Forecasts 0.41725 0.38339 0.15704 0.15214 0.1043f

HB—1 Forecast
~A 10 Forecasts
-X—100 Forecasts

Number of Validation Modules

Figure 62: Validation Distribution -1,10,100 Forecasts

As shown in Figures 62 and 63, the 100 forecast problem size definitely

benefits from distributed processing with its corresponding efficiency generally

maintained for increases in the number of processors. One and ten forecast sizes

do not maintain their corresponding efficiencies as the number of processors are

increased; this indicates that overhead time is dominating useful computational

(validation) time for these problem sizes.

154

Forecast Validation Efficiency

CO
■o
c
o
u
0)
(0

1
0.8
0.6
0.4
0.2

0

1 Forecast

10 Forecasts

100 Forecasts

0.204457

0.417685

0.090577

0.454949

0.958658 0.521662 0.849041 0.657289 0.766577

0.061804

0.372186

0.007824

0.285217

1 Forecast

•*—10 Forecasts

*—100 Forecasts

Number of Validation Modules

Figure 63: Validation Efficiency -1,10,100 Forecasts

In Figures 64 and 65, the 1000 forecast problem size also shows a decrease

in overall execution time with its corresponding efficiency generally maintained

for increases in the number of processors.

Forecast Validation -Coarse Distribution

(A
TJ
C
o
o o

CO

6 -]
c

' '. ^^

0 -
1 2 3 4 5

|1000 Forecasts 4.13776 3.44199 1.4063! 1.0698' 0.8648^

-X—1000 Forecasts

Number of Validation Modules

Figure 64: Validation Distribution -1000 Forecasts

155

Forecast Validation Efficiency

M
TJ c
o u o

CO

1

0.8

0.6

0.4

0.2

0

1000 Forecasts 0.96673 0.58107 0.9481

-X—1000 Forecasts

Number of Validation Modules

Figure 65: Validation Efficiency -1000 Forecasts

An interesting experiment result is the sharp drop in efficiency for all

problem sizes when the number of processors is two. Once again, this is due to

the operation's overhead time dominating computational time. For example, in

the case of a 1000 forecast problem size for two processors, 500 forecasts are sent

to each processor for validation. For three processors, 333 forecasts are sent to

two processors, while 334 are sent to the third, and so on.

The validation experiment uses a multi-threaded client to distribute the

statically balanced load to on-line validation modules, i.e. a separate thread is

used to send the forecast load to each validation module and is subject to the

scheduling policies of the underlying operating system, Win32 in this case. Each

thread has its own overhead associated with it, e.g. creation time, waiting to run

time, communication time. Since there is no distinction in thread priority, Win32

uses a time quantum (round-robin) scheduling scheme to give each thread execu-

tion time [11]. In the case of two processors the thread's overhead associated

156

with buffering and transmitting larger forecast sizes, appear to cause the lower

efficiency relative to using a higher number of processors with lesser communi-

cation requirements. The forecast size is also substantial enough in the two-

processor case to cause a lower efficiency than the single processor, since both

threads compete for processor time, while no competition occurs for the single

processor. These results show that for larger forecast sizes, validation distribu-

tion is scalable when using 3,4, or 5 processors, but efficiency suffers when using

two processors for forecast validation, assuming a multi-threaded distribution

mechanism as previously discussed.

6.5 Integration and System Experiments

The objective of integration and system experiments is to put the TFMS

modules together and test system identified transactions (§3.4.1.2 Functional De-

scription). This research tests the submit transaction (§3.4.2.4 Transaction Model,

§5.4.4 Submit Transaction). As with the validation experiment, single forecasts,

then bulk update operations of 10,100, and 1000 forecasts are tested. The submit

transaction is deployed using a N-tier topology (§5.3.1 N-Tier Topologies), where

1, 3 and 5 processors are used as business layers, which validate and publish

forecasts using the Event channel algorithm, and one processor is used as the

data layer, which adds forecasts to an object cache.

As shown in Figures 66 and 67, execution times decrease significantly

when submitting 100 and 1000 forecasts to three processors, but the rate of de-

157

crease starts to flatten out for five processors. These results generally follow the

validation experiment results, since publication using the MICO Event channel is

scalable for all forecast sizes up to five collection sites.

Integration - Submit Transaction

0.8 i

0.6 -

0.4 -

0.2 -

0 -

3k
■o
c
o u
W

«&— ' ' — .__..£,

1 3 5

1 Forecast 0.05252 0.06911 0.09234

10 Forecasts 0.10567 0.10476 0.12559

100 Forecasts 0.67043 0.30297 0.27492

1 Forecast

■■&-10 Forecasts

*--100 Forecasts

Number of Validation Modules

Figure 66: Submit Transaction -1,10,100 Forecasts

Integration - Submit Transactiontion

(0
■D
C
o
o
a>

CO

8 -,

R -

A

 ~K

r\
1 3 5

|l000 Forecasts 6.62408 2.30446 1.805

-*—1000 Forecasts

Number of Validation Modules

Figure 67: Submit Transaction -1000 Forecasts

For one and ten forecasts, distributed processing has no benefit at all, as

execution time gradually increases with additional business (validation) layers.

158

6.6 Summary

In this chapter, results based on experimental design and implementation

are presented and discussed (§4.3 Experimental Design, §5.4 Experiments).

CORBA benchmark results are shown and the impact of measuring call dispatch

rate, marshaling rate, server-side throughput, and Name Server performance is

discussed in the context of overall distributed system design. Forecast publica-

tion and validation results are presented and the efficacy of flexible system de-

sign is addressed in the context of federating these services within the distrib-

uted TFMS [21]. Integration experiments are used to show the effectiveness in

meeting the customer's functional requirements, and showing why a certain to-

pology or processor allocation is employed.

159

VII. Conclusion

A complex system that works is invariably found to have evolved from a simple system
that worked. — John Gall

7.1 Research Significance Revisited

This research provides a distributed system engineering approach for the

Air Force Weather Agency (AFWA), which uses a combination of structured, ob-

ject-oriented, and distributed software engineering techniques to develop an effi-

cient and evolutionary software system [4, 5, 6,16, and 17]. This design method-

ology incorporates proven principles such as component reuse and architectural

development through the use of design patterns and modular software construc-

tion techniques [13 and 14]. While these design techniques are nothing new to

most software developers, the methodology provides AFWA with a measured

approach that examines the big picture of integrating their business functions into

a truly global software environment. This investigation addresses TAF submis-

sion, validation, publication, and metric collection functions in their entirety,

showing exactly how these functions are decomposed, designed, implemented,

and ultimately allocated to hardware within a distributed computing environ-

ment. By viewing the problem in a global context, research goals and objectives

were surpassed and the results are a more realistic representation of possible so-

lutions (§1.3 Research Goals, §1.4 Specific Objectives), given the constraint of an

160

open, distributed AFW operating environment (§1.6 Assumptions, Scope, and

Constraints).

In addition to providing an end-to-end investigation of TAF processing and

metric collection, this effort also provides AFW with a logical, rule-based meas-

urement model used to measure and collect data quality statistics. This meas-

urement model has the potential impact of providing each regional processing

center (OWS) with its own data quality collection facility to measure the data

processing process while also certifying data prior to submission to the data

warehouse at AFWA (§3.4.1.5 Measuring TAF Data Quality and Accuracy). The

effectiveness of this data measurement and processing model is one of using a

simple, consistent approach to processing and measuring data at the local (re-

gional) level. The regional processing centers must address their own data qual-

ity deficiencies if they do not meet organizational standards while the data ware-

house is used as an AFW knowledge source for enterprise data storage and min-

ing of information that affects the entire AFW organization.

This investigation also shows the importance of developing an application

prototype for performance benchmarking purposes, derived from a simple cli-

ent/server model. The prototype is used to quantify the impact of design deci-

sions on computer resource utilization, system scalability, system performance,

ease of implementation, and system evolution (§4.2.2 CORBA Performance Met-

rics). These performance benchmarks are also used as selection criteria for objec-

161

tive purchasing decisions, whether its procuring the appropriate number of

hardware components based on measured system efficiencies or determining an

appropriate CORBA implementation that meets the minimum performance and

functional requirements for the system.

7.2 Critical Research Factors

Four factors impacting this investigation are related to meeting the objec-

tives set forth in chapter one (§1.4 Specific Objectives):

1. Functionality: Does the software system meet customer functional require-

ments? The TAF accuracy measurement model previously discussed provides

an efficient, rule-based approach to the problem of processing and measuring

TAF accuracy (§7.1 Research Significance Revisited).

2. Performance: Does ORB performance meet application requirements? Is the

application tuned for its operating environment? A simple client/server

measurement methodology is used to measure ORB performance. This

model is then extended to application-specific functions and data types to

quantify the impact of bulk operations, multithreading, and component

granularity (§4.2.2 CORBA Performance Metrics, §6.2 ORB Experiments).

3. Complexity: Does the software design contain well-defined interfaces that

hide details and complexities? Are sufficient software abstractions provided

to simplify the architecture? The TAF accuracy measurement model is the

principal abstraction upon which all further design is based (§3.4.1.5 Measur-

162

ing TAF Data Quality and Accuracy). The design methodology completely

separates interface definition from implementation detail and uses OMG ser-

vices to promote reliability, reusability, and architectural stability at the ap-

propriate level (§3.5 Distributed Object System Design).

4. Scalability and Extensibility: Is the software design easily extended and scal-

able? Does the software system use a scalability model to solve design issues

in the global, enterprise, system, application, and component-level architec-

tural domains? The design is a scalable and easily extendable solution to a

global processing problem where proven design patterns are applied and im-

plemented at the appropriate architectural level (§3.5.3 System Performance,

Evolution, and Reliability Considerations, §3.5.2 System Module Design, §6.5

Integration and System Experiments).

7.3 Efficiency and Effectiveness Discussion

The major research findings in the context of distributed system efficiency

and methodology effectiveness are discussed in this section. First, the impact of

a quantitative approach using system prototyping is presented then the overall

effectiveness of the methodology is examined.

7.3.1 Impact of System Prototyping

All complex systems evolve from simple models. In the case of distrib-

uted object systems, the effectiveness of using a simple client/server model is

163

used to show the impact of calling and sending specific data types to a remote

machine. From this simple measurement model, the prototype is incrementally

extended to include more and more distributed application functionality such as

testing a vendor's CORBA implementation, a designer's algorithm selection, or a

module's particular deployed configuration in a NT-tier topology. The overall

impact of using distributed system prototyping is that it provides valuable in-

sight into efficient distributed application design. This information is used for

software vendor selection, hardware purchases, or as empirical data that shows

inefficient use of current hardware platforms as it relates to resource utilization

and computing efficiency. The following factors require attention to enable effi-

cient distributed design and component placement in a CORBA environment:

1. Call latency/ dispatch rates for ORBs: Call dispatch rates for parameterless

and parameterized operations set a fundamental design limit for an object re-

quest broker. If the TFMS required an operation dispatch rate of over 300

calls/ second for a double data type, then other ORBs would have to be con-

sidered because MICO's dispatch rate was ~299 (§6.2 ORB Experiments).

2. Name Service and Event Service performance: Name resolution and binding

times can greatly impact a large, distributed environment that relies on a

Name Service to solve the problem of how components get object references

at runtime. The MICO name service shows that the number of bindings in a

naming context has no effect on client name resolution and binding (§6.2 ORB

164

Experiments). Many distributed environments are also event-driven, so it's

important to stress the fan-out capability of the implementation. The MICO

Event service is scalable for 1,10,100, and 1000 forecasts up to five collection

sites, but when seven sites subscribed for publications, the time to publish 100

and 1000 forecasts increased dramatically. Test all CORBA services designed

in the application's system architecture to determine if it meets system re-

quirements (§6.3 Publication Experiments).

3. Data types and their corresponding return types: These results confirm the

importance of designing remote interface operations with bulk data transfer

support. The impact of providing bulk transfer support as operation parame-

ters are shown to be an effective way to efficiently design CORBA IDL opera-

tions. A single forecast and a CORBA sequence of 10 forecasts incurred the

same communication costs (§6.2 ORB Experiments).

4. Server/component computation times: Too little computation on the

server/component reduces overall system efficiency because of the overhead

incurred with distributed computing. The TFMS validation function exhibits

good overall efficiency when validating 100 or 1000 forecasts, but system effi-

ciency cannot be maintained when validating 1 or 10 forecasts (§6.4 Valida-

tion Experiments).

5. Task allocation and threads: Certain functions are more amenable to a multi-

threaded approach. Allocate separate tasks for expensive I/O or computa-

165

tional processing. In the case of testing server performance, a single-threaded

implementation is underutilized for a 10 KFLOP workload, but is fully util-

ized when a 1 MFLOP workload is applied. Overall server response time and

throughput is improved by allocating a separate task (thread) for expensive

workloads; this approach also provides hardware scalability when additional

processors are added to the machine (§6.2 ORB Experiments).

6. Component Integration: Once the distributed characteristics of individual

components are determined, integrate the components for system-wide

transaction testing to determine end-to-end efficiency. When testing compo-

nent integration, keep Amdahl's Law in mind: 1) make the common case fast,

and 2) application speedup is bounded by the slowest component [10]. The

submit transaction showed a dramatic decrease in execution time when 100

or 1000 forecasts are submitted to three validation modules, but levels off due

to increased communication time when using five validation modules (§6.5

Integration and System Experiments).

7.3.2 Effectiveness of Methodology

A major focus of this research investigation was to describe an appropri-

ate design methodology suitable for large distributed object systems (§111. Dis-

tributed System Design). Major findings include:

166

1. Interface and implementation separation is paramount to minimizing soft-

ware dependencies and maximizing reuse in object-oriented systems (§3.5.2

System Module Design).

2. Software design patterns are a very effective form of guidance available for

solving design and implementation issues at all architectural levels [13 and

14]. Design patterns are also very useful for designing easily extendable

software systems. Use patterns at all architectural levels; e.g. use GORBA's

Event Service as the publish/subscribe mechanism at the system level

(§3.5.1 System Partitioning, §3.5.2 System Module Design).

3. Parameterized types aid system reuse and overall reliability. The C++ STL

provides many different data structures, e.g. vector, list, stack, map, multi-

map, etc. [9]. Using the C++ STL increases application reliability and soft-

ware reuse while reducing coding and debugging time since its containers

and algorithms are fully tested and debugged [51 and 70].

4. Structured analysis techniques, e.g. data/control flow diagrams are more

effective for properly partitioning the distributed system into modules and

specifying the task architecture (§3.4.2 Information System Model).

5. OO modeling worked best to show the system's schema, message paths be-

tween system entities, and internal task behavior (§3.4.2.4 Transaction

Model, §3.5 Distributed Object System Design).

167

The effectiveness of this approach is primarily found in the unification of

many proven software analysis, design, implementation, and performance predic-

tion techniques used to efficiently and incrementally develop a large, distributed

object system. This methodology uses proven techniques at each stage of the

lifecycle. By using the strengths of structured, modular, and object-oriented

software design methods, a loosely coupled and highly autonomous design is

produced. System extension and modification to component/module implemen-

tations has no effect on clients, since they're compiled to stable interfaces. By us-

ing proven design patterns to solve problems at each architectural level, an ex-

tensible, efficient, and understandable software system is developed. The use of

parameterized types (generics) along with OO programming techniques reduces

source code errors by using preexisting component/standard libraries and appli-

cation classes, e.g. Threadpool application class and C++ map container, to im-

plement either application or additional object-level functionality.

7.4 Future Research and Recommendations

The TFMS prototype provides simple event service and name service im-

plementations. Future research efforts could explore federating the OMG Event,

Name, or Trader services to investigate their use as scalable, global architectures.

The OMG Event service enables site autonomy by completely decoupling clients

from servers, as location independence is a major goal concerning open system

design [12 and 21]. Future research efforts could also expand upon this notion

168

by implementing dynamic discovery characteristics provided by the CORBA

Query, Notification, and Trader services. Research in this area has direct appli-

cation in knowledge or agent-based systems where component mobility and

autonomy are the overriding system goal [8].

The basic TFMS N-tier application and test generator is built to perform a

variety of tests or implement certain functionality: call latency, parameter mar-

shaling, Win32 API threads, event service, and name service. Many of the ex-

periments are useful in determining the best performing ORB for an organiza-

tion's business requirements, or if a different distributed object paradigm, e.g.

DCOM or Java RMI are more appropriate. Additional development could vastly

improve the comprehensiveness of the measurement model for all distributed

object paradigms with a more intuitive graphical user interface. This measure-

ment model could address real-time distributed application models as well, with

particular emphasis on priority inversion bounding and quality of service guar-

antees.

169

Appendix A: Object Management Architecture
(OMA)

To support very large, complex distributed object applications, it's desir-

able to specify an infrastructure that supports the handling of common opera-

tions such as object lifecycles, identification, interface definitions, and intercom-

munication. The Object Management Group (OMG) was formed to reduce com-

plexity and lower development cost and time. The OMG is an international

trade organization incorporated as a nonprofit organization in the United States.

OMG is currently comprised of over 800 corporate members and the number

gets larger every year [21]. OMG provides the OMA, which consists of all the

terms and definitions that all specifications are based [26]. The OMA contains

the following elements as depicted in Figure 68:

1. Object Request Broker (ORB): A communication standard known commer-

cially as CORBA. CORBA 2.0 specified the Internet Inter-ORB Protocol

(HOP), which guarantees ORB interoperability if the vendor's ORB is CORBA

2.0 compliant [21].

2. Object Services: Common object specifications such as naming, security, and

transaction and are known commercially as Common Object Service Specifi-

cations (COSS). The COSS are collections of system-level services packaged

as components specified in IDL [8].

170

Noa-atmnttartlixett Application
app-apactttc tntotfaca* dommtn-apacmc intarfacaa

Horixorrtai
facility intarfacaa

Application Interfaces

C

Domain Interfaces

OÜ oo oo
Common Facilities

Object Request Broker
>

ÖÖ ÖÖ
Object Services

Figure 68: OMA [26]

3. Common Facilities: A set of horizontal and vertical IDL-specified services.

Horizontal services may apply to more than one application domain such as

information and system management while vertical services apply to a par-

ticular domain such as finance or healthcare.

4. Domain Interfaces: Specific application domains such as finance and health-

care [26].

5. Application Objects: Components specified for end-user applications. Appli-

cation objects build on the services provides by the OMA.

The OMA is broken down into two main models: an Object Model and a

Reference Model. The Object Model defines how the interfaces of objects distrib-

uted across a heterogeneous environment are described, and the Reference

Model characterizes interactions between object interfaces [21].

171

A.1 The OMG Object Model

The Object Model defines an object as an encapsulated entity with an im-

mutable distinct identity whose services are accessed only through a well-

defined interface [26]. As the previous statement may show some readers, the

OMA has some unique concepts and terminology associated with it. We explore

a few concepts and terms regarding the OMA in this section.

A.1.1 General Concepts and Terminology

General terms and concepts related to CORBA [21]:

1. A CORBA object is a virtual entity capable of being located by an ORB and its

operations invoked by a client. The "virtual" is regarding the fact that it

doesn't exist unless it's made concrete by an implementation language such

as C++ or Java.

2. A CORBA object servicing a client request is called a target object. The

CORBA Object Model is single dispatching, where the target object is deter-

mined solely by an object reference.

3. A client is an entity that invokes a CORBA object. A server is an application

where one or more CORBA objects exist. Of course, the term client and

server are meaningful only if considering the request context.

4. A request invokes an operation on a CORBA object.

5. An object reference is used to identify, locate, and address a CORBA object.

Object references are opaque to clients - only used for method invocation.

172

6. A servant is the CORBA object implementation in a particular programming

language (class). Servants incarnate CORBA objects and can be considered

object instances of a particular class.

A.1.2 OMG Interface Definition Language

Metadata is a crucial ingredient when developing flexible distributed sys-

tems. Metadata provides a distributed system with self-describing, dynamic,

and reconfigurable capabilities. Using metadata, components discover each

other at runtime, further enhancing interoperability [8]. Because IDL is a declara-

tive language, its sole purpose is to allow object interfaces to be defined in a

manner entirely independent of any particular programming language [21]. This

allows applications implemented in different programming languages to inter-

operate; this language neutrality is critical to the OMA supporting heterogeneous

environments [8, 21, and 26]. Language mappings specify how IDL is trans-

formed into a particular programming language e.g. in C++, interfaces transform

to classes and in Java, interfaces transform to public interfaces.

As Figure 69 shows, IDL data types include built-in simple types like short

and string, and also constructed types such as enumeration, sequence and array.

Object references are denoted in IDL just as many programming languages de-

note user-defined structures or classes, by using the name of the interface as the

type. Multiple interface inheritance is supported in IDL as well.

173

Value

Object Reference Consfrucjed Value

Basic Value Struct Sequence Union Array

Short Long UShort ULong Roat Double Char String Boolean Octet Ertum Any

Figure 69: OMA Legal Values [26]

Modules provide a namespace to a group of interface definitions and are

analogous to C++ namespaces and Java packages. Interfaces define a set of meth-

ods a client may invoke and map to C++ and Java as mentioned above. Opera-

tions denote a service (method) that clients may invoke. Operation parameters

have mode in, out, or inout with respect to the servant. Parameter modes are

necessary for two primary reasons:

1. Directional attributes are required for efficiency e.g. an "out" parameter is

only communicated from the server to the client [12].

2. Directional attributes determine responsibility for memory management,

whether the server or client is responsible to allocate memory for a specific

parameter [21].

A.2 The OMG Reference Model

As mentioned above, the Reference Model provides interface categories

that are general groupings for object interfaces that collaborate to carry out a set

174

of responsibilities - commonly referred to as frameworks. In this section the ORB

and the COSS frameworks are presented.

A.2.1 Object Request Broker (ORB)

CORBA defines the interface specification for an OMA-compliant ORB.

Clients are not aware of the communication mechanisms employed in the ORB,

how objects are activated, how objects are implemented, or where objects are lo-

cated. The ORB is the application building foundation for distributed system de-

sign using the OMA. The ORB ensures interoperability between applications in

both homogeneous and heterogeneous environments. The OMG Interface Defi-

nition Language (IDL) provides the "glue", connecting objects in a standard way

by defining the interfaces to CORBA objects. The CORBA specification has the

following elements as shown in Figure 70:

1. ORB Core: The CORBA runtime infrastructure. The ORB Core interface is not

specified by CORBA, and is therefore vendor specific.

2. ORB Interface: The standard interface written in IDL and provided by a

CORBA- compliant ORB.

3. IDL Stubs: Generated by the IDL compiler for each interface defined in IDL.

Stubs hide the low-level networking details of object communication from the

client, while presenting a high-level, object type-specific application pro-

gramming interface (API) [33].

175

CLIENT
[«•".■■' OBJECT- ■' •
I IMPLEMENTATION

\ /

\ /

\ "A
: IDL -:\

Dn [STUBS!
SKEESTON

: DSI
■ v»^.. > .-.. *; * . _ ..I OBJECT

ADAPTER

OBJECT REQUEST BROKER

Figure 70: CORBA Specification

4. Dynamic Invocation Interface (DII): An alternative to static stubs for clients to

"discover" and invoke objects. While static stubs provide an object type-

specific API, DII provides a generic mechanism for constructing requests at

run time. The interface repository, a client's object definition database of

metadata, allows some measure of type checking to ensure that a target object

can support the request made by the client.

5. Object Adapter: Provides extensibility of a CORBA-compliant ORB to inte-

grate alternative object technologies into the OMA. For example, adapters

may be developed to allow remote access to objects that are stored in an ob-

ject-oriented database. Each CORBA-compliant ORB must support a specific

object adapter called the basic object adapter (BOA). CORBA release 2.2

specifies the portable object adapter (POA), which removed server-side port-

ability problems that existed in the BOA [21].

176

6. IDL Skeletons: The server-side analogue of IDL stubs. IDL skeletons receive

requests for services from the object adapter, and call the appropriate opera-

tions in object implementations.

7. Dynamic Skeleton Interface (DSI): The server-side counterpart of DII. While

IDL skeletons invoke specific operations in the object implementation, DSI

defers this processing to the object implementation repository. This is useful

for developing bridges and other mechanisms to support inter-ORB interop-

eration. The implementation repository is the server analogue to the interface

repository; this is the server-side object definition database.

A.2.2 General Clienl/Sever Flow

Refer once again to Figure 70 for the following discussion. Requests flow

down the client application, through the ORB, and up the server application as

follows:

1. The client invokes a request into the ORB using either the static IDL stub or

dynamic invocation interface (DII).

2. The client ORB transmits the request to the server ORB using HOP.

3. The server ORB dispatches the request to the appropriate object adapter

(BOA or POA).

4. The BOA or POA further dispatches the request to the appropriate servant

object using either the static server skeleton or the dynamic skeleton interface.

177

5. The servant object that implements the interface definition performs the re-

quest and returns a response if required.

A.2.3 Application Development

To call a CORBA object member function, a client only needs to know the

standard ORB Services and the object's IDL. Creating a CORBA Application in-

volves the following generic steps:

1. Define object interfaces using the CORBA IDL.

2. Compile these interfaces with an IDL Compiler. This produces stub code for

client objects and skeleton code for server objects.

3. Develop server programs that implement the IDL interfaces.

4. Register the server object(s) in the ORB.

5. Develop client programs that use the IDL interfaces.

A.2.4 Object Services

Object Services are domain-independent, horizontally oriented interfaces

used by many end-user application programs. Major OMA object services:

1. Life Cycle: Used for creating, copying, moving and deleting components.

2. Persistence: Provides an interface for storing components persistently.

3. Name: Allows components to locate each other.

4. Event: Allows components to register and deregister for events.

5. Concurrency Control: Provides a resource lock manager.

178

6. Transactional: Provides two-phase commit using transactions.

7. Relationship: Allows the creation of dynamic relations among components.

8. Externalization: Provides a way of streaming data into or out of a component.

9. Query: Provides object query operations.

10. License: Controls object use.

11. Property: Provides a mechanism to alter component attributes.

179

Appendix B: CORBAIDL
/*
Module: Terminal Forecast Management System (TFMS).
TYPE: CORBA Interface Definition Language (IDL)
DATE: 12/12/1999
FILENAME: TFMS.idl
DESCRIPTION: TFMS data and object interface definition.
AUTHOR: James S. Douglas, Captain, USAF
REVISIONS:

12/12/1999: TFMS initial definition (Douglas - jsd)
 V

// Uniqueness prefix applied for TFMS repository data.
#pragma prefix "douglas.com"

// Begin TFMS Namespace definition.
// //
module TFMS
{
/ /*** / I

II Begin TFMS data definitions
// //
enum MessagelD

{// scheduled, special, or forecasted weather report identifier
MET AR, SPECI, TAF};

enum Modifier
{// scheduled, ammended, corrected, or unscheduled
REG, AMD, COR, RTD};

struct DateTime
{// TFMS Date/Time data structure

unsigned short year;
unsigned short quarter; // quarter = 1, 2, 3, or 4
unsigned short month;
unsigned short day;
unsigned short hour;
unsigned short minute;

struct ForecastData
{// TFMS forecast data structure

unsigned short icao;
string<4> majcom;
MessagelD message_id;
Modifier modifier;
unsigned short wind_direction;
unsigned short wind_speed;
unsigned short wind_gusts;
unsigned short visibility;
string significant_weather;
string cloud_layer;
string remarks;
string<14> key; // icao + year + month + day + hour
DateTime issued;
string change_group;
unsigned short crosswind;

};

180

struct ObservationData
{// TFMS observation data structure

string<4> icao;
string<4> majcom;
MessagelD message_id;
Modifier modifier;
unsigned short wind_direction;
unsigned short wind_speed;
unsigned short wind_gusts;
unsigned short visibility;
string significant_weather;
string cloudjayer;
string remarks;
string<14> key; // icao + year + month + day + hour
DateTime issued;
unsigned short runway_visual_range;

/* Note: The use of struct types for forecasts and observations
is to ensure compatibility across all object request brokers. A
more elegant definition would use objects by value, currently
supported in CORBA version 2.3, but not widely implemented.
If using objects by value, a Weather interface is defined, then
Forecast and Observation interfaces would inherit all
Weather attribute and operation definitions, (jsd) */

// Defines sequences of forecast and observation data to
// support bulk validation/publication requirements,
typedef sequence<ForecastData> Forecasts;
typedef sequence<ObservationData> Observations;

struct ValidationField
{// Contains validation information for a specific weather element.

// The ValidationField data structure is used to collect metrics
// for an individual weather element.

MessagelD type;
string<14> key; // icao + year + month + day + hour
string field;
boolean passed_format;
boolean passed_accuracy;
string reason-
string category;
DateTime accuracy_id;

// Defines a sequence of validation fields as the
// validation result.
typedef sequence<ValidationField> ValidationFields;

struct ValidationReport
{// An individual validation report consists of a sequence of
// validation fields.

ValidationFields report;

// Defines a sequence of validation reports to
// support bulk validation/metric processing requirements,
typedef sequence<ValidarionReport> ValidationReports;
// //

// End TFMS data definitions.

181

// Begin TFMS object interface definitions
// //
interface IRBusiness
(// IDL for remote Business interface

// Submit operations. All forecasts and observations
// that pass validation are also published to other sites.
// Pre: Requires a sequence of forecasts or observations.
// Post: Returns a sequence of validation reports.
// Note: TFMS Experiments do not require returning
// validation results.
void submitForecasts (in Forecasts tafs);
ValidationReports submitObservations (in Observations obs);

// Operation to manually validate forecasts.
// Used for testing validation function.
// Pre: Requires a sequence of forecasts.
// Post: Returns a sequence of validation results.
// Note: TFMS Experiments do not require returning
// validation results.
void validate (in Forecasts tafs);

// Operation to manually publish forecasts.
// Used for testing publication function.
// Pre: Requires a sequence of forecasts and algorithm selection.
// Primary copy = 1, Pipeline = 2, Event Channel = 3.
// Post: None.
void publish (in Forecasts tafs, in unsigned short algorithm);

};

interface IRCollection
{// IDL for remote Collection interface.

// Add operations. All forecasts, observations,
// and validation reports are processed for data collection.
// Pre: Requires a sequence of forecasts, observations,
// or validation reports.
// Post: None.
void addForecasts (in Forecasts tafs);
void addObservations (in Observations obs);
void addReports (in ValidationReports reps);

};

interface IRBenchmark
{// IDL for ORB benchmark interface.

oneway void callRate();
void marshalDouble (in double d);
void marshalForecast (in ForecastData fd);
void marshalBulk (in Forecasts tafs);
void singleThread (in unsigned long workload);
void multiThread (in unsigned long workload);

// //
// End TFMS object interface definitions

};
// //
// End Namespace definition for the Terminal Forecast Management System.

182

ACID

AFI

Acronyms

Atomicity, Consistency, Isolation, and Durability

Air Force Instruction

AFMAN Air Force Manual

AFW Air Force Weather

AFWA Air Force Weather Agency

AWDS Automated Weather Distribution System

C/S Client/Server

COM Component Object Model

CORBA Common Object Request Broker Architects

COSS Common Object Service Specifications

COTS Commercial Off-The-Shelf

DBMS Database Management System

DC Domain Controller

DCOM Distributed Component Object Model

DDBMS Distributed Database Management System

DDL Data Definition Language

DFD Data Flow Diagram

DLL Dynamic Link Library

DML Data Manipulated Language

DOS Distributed Object System

183

DTC Distributed Transaction Coordinator

EXE Executable

FAA Federal Aviation Administration

FLOP Floating-point Operations

FLOPS Floating-point Operations per second

GOTS Government Off-The-Shelf

ICAO International Civil Aviation Organization

IAW In Accordance With

IR Information Retrieval

ISA Instruction Set Architecture

KDC Key Distribution Center

LAN Local-Area Network

LPC Local Procedure Call

MAN Metropolitan-Area Network

MICO MICO Is CORBA

MIPS Millions of Instructions per second

MSMQ Microsoft Message Queue Server

MTS Microsoft Transaction Server

NOS Network Operating System

NT New Technology

ODBMS Object-Oriented Database Management System

184

OMA Object Management Architecture

OMG Object Management Group

OO Object Oriented

OOSE Object Oriented Software Engineering

OQL Object Query Language

ORB Object Request Broker

OTM Object Transaction Monitor

OWS Operational Weather Squadron

PDC Primary Domain Controller

POA Portable Object Adapter

POS Persistent Object Service

PPC Pile of Personal Computers

RM Resource Manager

RMI Remote Method Invocation

RPC Remote Procedure Call

SMP Symmetrical Multiprocessor

SQL Structured Query Language

SRD Systems Requirement Document

STL C++ Standard Template Library

TAF Terminal Aerodrome Forecast

TCP/IP Transmission Control Protocol/Internet Protocol

185

TFMS Terminal Forecast Management System

TGS Ticket Granting Server

TPM Transaction Processing Monitor

VB Microsoft Visual Basic

VC Microsoft Visual C++

WAN Wide-Area Network

WF Weather Flight

WMO World Meteorological Organization

WWW World Wide Web

186

Glossary

Terms and definitions related to this research:

Abstract Class: A class whose primary purpose is to define an interface. An ab-
stract class cannot be instantiated within the software system.

Abstract Operation: An operation that declares a signature but doesn't imple-
ment the operation. In C++, this is a pure virtual member function.

Aggregate Object: An object composed of other objects.

Authentication: Provides a means to verify the identities of clients and servers.

Black box: A style of reuse based on class aggregation or a style of testing where
internal implementation details are not used or revealed.

Class: A class defines an object's interface and implementation.

Client: An entity that invokes a CORBA object.

Concrete Class: A class with no abstract operations. A concrete class can be in-
stantiated within the software system.

Concurrency: Although a transaction is an individual task within the system,
multiple transactions may need to access the same data at the same time.

Constructor: An operation that defines the way to initialize an object within a
particular class of objects.

CORBA object: A virtual entity capable of being located by an ORB and its op-
erations invoked by a client. The "virtual" is regarding the fact that it doesn't
exist unless it's made concrete by an implementation language such as C++.

Coupling: The degree of dependency between software components. Tight cou-
pling means objects are highly dependent on each other while loose coupling
usually refers to objects that have no dependencies on each other.

Data Allocation Schema: Describes where data fragments are located (site parti-
tioning) [28].

Data Fragmentation Schema: Describes how global relations (data) are divided
among local data stores.

Data replication: Signifies that multiple copies of data exist in the distributed
system to improve fault tolerance and performance [9].

Delegation: An implementation method where an object delegates a request to
another object who then carries out the request.

187

Design Pattern: Addresses recurring design problems in object systems. Usually
describes the problem, circumstances for applying the pattern, structural exam-
ples, and consequences of using the design pattern.

Distributed Database: A logical collection of shared data, physically distributed
across the nodes of a computer network [28].

Encapsulation: Result of hiding an object's implementation or internal state.

Inheritance: Consists of interface and implementation inheritance. In CORBA,
multiple interface inheritance is supported to derive new interfaces from existing
ones. Conventional class inheritance typically refers to the combination of inter-
face and implementation inheritance. A class that inherits from another class is
called a subclass or derived class.

Integrity: Refers to a transaction transforming the database from one consistent
state to another consistent state.

Interface: Describes the set of operations or services an object provides to clients.
In distributed object systems, you program to an interface, not an implementa-
tion.

Localized failure: Denotes that if a node in the distributed system fails, it doesn't
affect the operation of other nodes [27 and 28].

Location Transparency: Signifies that users do not know or need to know where
data is stored on the network [12].

Object Reference: Used to identify, locate, and address a CORBA object. Object
references are opaque to clients - only used for method invocation.

Operation: An object's data is manipulated by operations. Operations are per-
formed when the object receives a request.

Overriding: Redefining an inherited operation in a derived class.

Parameterized Type: A type that requires additional type specification supplied
as parameters during declaration. Called templates in C++, generics in Ada.

Polymorphism: The ability to substitute objects with matching interfaces for one
another during run time. In C++, a dynamic cast operation is used to downcast
to the appropriate object type. CORBA uses a narrow operation to downcast.

Principal: A user or process that requires secure communication.

Recovery: Refers to the ability to rollback all intermediate changes if a particular
action cannot be completed, so the database maintains integrity and is not left in
an inconsistent (unknown) state.

Request: Invocation of an operation on a CORBA object.

188

Secret Key Cryptosystem: Uses a single key for both encryption and decryption.

Servant: A CORBA object implementation in a particular programming lan-
guage. Servants incarnate CORBA objects and can be considered object instances
of a particular class.

Server: An application where one or more CORBA objects exist.

Single Logical Database View: Analogous to the single system image notion
where the distributed system appears to the user as a centralized or local system
[10,12, and 27].

Target Object: A CORBA object servicing a client request.

Traceability: Validation that a particular software function corresponds to a
user-specified requirement.

Transaction: Considered a logical unit of work, recovery, integrity, and concur-
rency in a database system [9].

Type: The name of a particular interface or class.

White Box: A style of reuse based on class inheritance or a style of testing where
internal implementation details are used or revealed.

Work: Refers to performing a required system action.

189

Bibliography

1. Department of the Air Force. System Requirements Document (SRD) For the
Reengineered Air Force Weather Weapon System (AFWWS). Electronic Sys-
tems Center Air Force Weather Systems (ESC/ACW), 1998.

2. Valente, Alexandre. Analysis of the Use of N-Tier Architecture with Distrib-
uted Objects in Distributed-Database Systems. MS thesis,
AFIT/GCE/ENG/99J. School of Engineering, Air Force Institute of Technol-
ogy (AU), Wright-Patterson AFB OH, June 1998.

3. Semaphore Report. The Object Oriented Lifecycle: A Practical Guide to Best
Practice Based Development of Object-Oriented Systems. Revision 980314,
1997.

4. Schlicher, Bob. "CORBA in the Enterprise." Excerpt from unpublished arti-
cle, not paginated, http://developer.netscape.com, no date.

5. Rumbaugh, James and others. Object-Oriented Modeling and Design. Pren-
tice-Hall, Inc., 1991.

6. Pressman, Roger. Software Engineering: A Practitioner's Approach, 4th ed.
McGraw-Hill, 1997.

7. Edwards, Jeri. 3-Tier Client/Server at Work. John Wiley & Sons, 1998.

8. Orfali, Robert and others. The Essential Distributed Objects Survival Guide.
John Wiley & Sons, Inc., 1996.

9. Date, Chris. An Introduction to Database Systems, 6th ed. Addison-Wesley,
1995.

10. Hwang, Kai and Zhiwei Xu. Scalable Parallel Computing. McGraw-Hill,
1998.

11. Silberschatz, Abraham and Peter Galvin. Operating System Concepts, 5th ed.
Addison-Wesley, 1998.

12. Tanenbaum, Andrew. Distributed Operating Systems. Prentice-Hall, 1995.

13. Gamma, Erich and others. Design Patterns: Elements of Reusable Objected-
Oriented Software. Addison-Wesley, 1995.

14. Mowbray, Thomas and Raphael Malveau. CORBA Design Patterns. John
Wiley & Sons, Inc., 1997.

15. Kumar, Vipin and others. Introduction to Parallel Computing. The Benja-
min/Cunnings Publishing Company, 1994.

190

16. Wilson, Chip. "Application Architectures with Enterprise JavaBeans/' Com-
ponent Strategies, 25-34 (August 1999).

17. Box, Don. Essential COM. Addison-Wesley, 1998.

18. Chung, P. E. and others. "DCOM and CORBA Side by Side, Step By Step,
and Layer by Layer," C++ Report, (September 1997).

19. McConnel, Steve. Code Complete: A Practical Handbook of Software Con-
struction. Microsoft Press, 1993.

20. Kim, Won. Modern Database Systems: The Object Model, Interoperability,
and Beyond. Addison-Wesley, 1995.

21. Henning, Mike and Steve Vinoski. Advanced CORBA Programming with
C++. Addison-Wesley, 1999.

22. Stroustrup, Bjarne. The C++ Programming Language, 3rd ed. Addison-
Wesley, 1997.

23. Software Engineering Institute Technical Report. Distributed Object Tech-
nology with CORBA and Tava: Key Concepts and Implications. CMU/SEI-
97-TR-004, June 1997.

24. Tiwary, Ashutosh and others. "Building Large Distributed Software Systems
Using Objects," OOPSLA '95,191-195, (October 1995).

25. Arcus Report. Decoupling of Object-Oriented Systems: A Collection of Pat-
terns. Revision 1.0, November 1996.

26. Object Management Group (OMG). A Discussion of the Object Management
Architecture. OMG, January 1997.

27. Andleigh, Prabhat and Michael Gretzinger. Distributed Object-Oriented
Data-Systems Design. Prentice-Hall, 1992.

28. Bell, David and Jane Grimson. Distributed Database Systems. Addison-
Wesley, 1992.

29. Booch, Grady. Object-Oriented Design with Applications. Benja-
min/ Cummings, 1991.

30. Fujii, Roger. Logicon, Inc. "Introduction to Software Validation and Valida-
tion." Presented to Air Force Institute of Technology, Department of Electri-
cal and Computer Engineering students and faculty. Air Force Institute of
Technology, Wright-Patterson AFB OH, 5 August 1999.

31. Berard, Edward. Essays on Object-Oriented Software Engineering, Volume I.
Prentice-Hall, 1993.

32. Farley, Jim. Tava Distributed Computing. O'Reilly & Associates, 1998.

191

33. Software Engineering Institute Technical Report. Common Object Request
Architecture, http://www.sei.cmu.edu/str/descriptions/corba.html, Janu-
ary 1997.

34. Romer, Kay and Arno Puder. MICO Is CORBA. http://www.mico.org.
Version 2.2.7, no date.

35. Clark, Laurence. "Oracle Fail-Safe Solutions for Windows NT Clusters," Ora-
cle Whitepaper, (September 1998).

36. Microsoft Developer Network. "Two-phase Commit Protocol," Microsoft
Web Site, http: / /msdn.microsoft.com, no date.

37. National Weather Service. National Weather Service Operations Manual:
Aviation Terminal Forecasts. WSOM Issuance 97-5. NWS, 6 June 1997.

38. Ozsu, M. Tamer Patrick Valduriez. "Distributed and Parallel Database Sys-
tems," ACM Computing Surveys, Vol. 28, No. 1, (March 1996).

39. Tjandra, I. A. "Modeling Distributed Transactions," PDPTA '98 International
Conference, (1998).

40. Hu, Jian and others. "CORBA as Infrastructure for Database Interoperabil-
ity," Proceeding of the 10th IASTED International Conference on Parallel and
Distributed Systems, (October 1998).

41. Agarwal, Shailesh and Arthur Keller. "Architecting Object Applications for
High Performance with Relational Databases," Persistence Software White-
paper, http: / /www.persistence.com, no date.

42. Cahoon, Brendon and Kathryn McKinley. "Performance Evaluation of a Dis-
tributed Architecture for Information Retrieval," ACM SIGIR '96, (1996).

43. Raj, Rajendra. "The Active Collection Framework," ACM Applied Comput-
ing Review, Vol. 7, No. 1, (Spring 1999).

44. Jordan, David. C++ Object Databases. Addison-Wesley, 1998.

45. Jackson, Richard and others. "Guidelines for Reporting Results of Computa-
tional Experiments. Report of the Ad Hoc Committee," Mathematical Pro-
gramming 49 (1991), 413-425, (Revised September 1990).

46. Leon, Darryl. Real-time Forecast Validation for the Reengineered Air Force
Weather Architecture. Excerpt from unpublished MS thesis,
AFIT/GCS/ENG/00M-14. School of Engineering, Air Force Institute of
Technology (AU), Wright-Patterson AFB OH, March 2000.

47. Uhler, Stephen. "Event-Based Servers in Tel," Dr. Dobb's Tournal, 74-78 (Sep-
tember 1999).

192

48. Crowder, Harlan and others. "On Reporting Computational Experiments
with Mathematical Software," ACM Transactions on Mathematical Software,
Vol. 5, No., 2,193-203, (June 1979).

49. Defense Information Systems Agency. Predicting CORBA Performance
Through Prototyping. Joint Interoperability & Engineering Organization,
Center for Computer Systems Engineering, no date.

50. Beveridge, Jim and Robert Wiener. Multithreading Applications in Win32:
The Complete Guide to Threads. Addison-Wesley, 1997.

51. Soukup, Jiri. "Data Structures as Objects," Dr. Dobb's Journal, 21-30 (October
1999).

52. Lippman, Stanley. "Improving C++ Program Performance," Dr. Dobb's
Tournal, 40-45 (October 1999).

53. Microsoft Developer Network. "Validating the Data," Microsoft Web Site,
http://msdn.microsoft.com, no date.

54. Gray, Jim. The Benchmark Handbook: For Database and Transaction Process-
ing Systems, 2nd ed. Morgan Kaufmann, 1993.

55. Hennessy, John and David Patterson. Computer Organization and Design:
The Hardware/Software Interface, 2nd ed. Morgan Kaufmann, 1998.

56. Schmidt, Douglas. "Evaluating Architectures for Multithreaded Object Re-
quest Brokers," Communications of the ACM, Vol. 41, No. 10, (October 1998).

57. Kramer, Jeff. "Distributed Software Engineering: Invited state-of-the-art Re-
port," IEEE, (1994).

58. Object Management Group (OMG). The Common Object Request Broker:
Architecture and Specification. OMG, February 1998.

59. Department of the Air Force. Meteorological Codes. AFM15-124. Washing-
ton: HQ USAF/XOWP, 1 November 1998.

60. Schmidt, Douglas and Steve Vinoski. "Modeling Distributed Object Applica-
tions," C++ Report, (February 1995).

61. Spiegel, Murray. Probability and Statistics. McGraw-Hill, 1997.

62. Microsoft Developer Network. "Designing Efficient Applications for Micro-
soft SQL Server," Microsoft Web Site, http://msdn.microsoft.com, no date.

63. Thomas, Anne. Selecting Enterprise TavaBeans Technology. Patricia Seybold
Group, July 1998.

64. Department of the Air Force. "Air Force Weather Metrics Program." Power-
Point Presentation, December 1998.

193

65. PeerLogic Whitepaper. DAIS Security. IN393 Issue 1, August 1998.

66. Object Management Group (OMG). CORBAServices: Common Object Ser-
vices Specification: Security Service Specification. OMG, December 1998.

67. Department of the Air Force. Surface Observation Codes. AFM15-111.
Washington: HQ USAF/XOWP, 1 November 1998.

68. TAFVERIV Report. Functional/Statistical Requirements. No Revision, 1998.

69. Sumaria Systems Report. TAFVER IV Software Test Plan. Revision 1.0,1998.

70. Musser, David and Atul Saini. STL Tutorial and Reference Guide: C++ Pro-
gramming with the Standard Template Library. Addison-Wesley, 1996.

71. Loshin, David. "Living Legacy," Intelligent Enterprise, 46-50 (December 21,
1999).

72. Monson-Haefel, Richard. "Validation Rules in Distributed Object Systems,"
Distributed Computing, 26-28 (November 1999).

73. Stillerman, Matthew and others. "Intrusion Detection for Distributed Appli-
cations," Communications of the ACM, Vol. 42, No. 7, 0uly 1999).

74. Kohl, John and others. "The Evolution of the Kerberos Authentication Ser-
vice," IEEE, (1992).

75. Chappell, David. "Exploring Kerberos, the Protocol for Distributed Security
in Windows 2000," Microsoft Systems Tournal, (August 1999).

76. Gomaa, Hassan. Software Design Methods for Concurrent and Real-Time
Systems. Addison-Wesley, 1993.

77. Cetus Links. Cetus Web Site, http://www.cetus-links.org, no date.

194

Vita

Captain James S. Douglas was born on 15 December 1965 in Butler,

Pennsylvania. He graduated from Butler Area Senior High School in Butler,

Pennsylvania in June 1983. Captain Douglas enlisted in the Air Force in 1984 and

attained the rank of Technical Sergeant prior to completing undergraduate stud-

ies at the University of South Dakota in Brooking, South Dakota where he gradu-

ated with a Bachelor of Science degree in Electronic Engineering in May 1994.

He was commissioned through Officer Training School at Maxwell AFB, Ala-

bama where he was recognized as a Distinguished Graduate and the recipient of

the Thomas Jefferson Award for highest academic honors. Captain Douglas was

subsequently nominated for a Regular Commission in 1995.

While enlisted, Captain Douglas served as a heavy equipment op-

erator in Civil Engineering and worked in the Air Force's air launch cruise mis-

sile program as a precision measurement calibration technician. His first as-

signment as a commissioned officer was at Travis AFB, California in December

1995 as a network engineer supporting HQ 15th Air Force. In August 1998, he

entered the Graduate School of Engineering, Air Force Institute of Technology.

Upon graduation, he will be assigned to Hill AFB, Utah as a software engineer.

Permanent Address:
127 Fontana Street

Butler, PA 16001

195

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining tho data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway. Suito 1204, Arlington, VA 22202-4302, and to the Offico of Management and Budgot. Paperwork Roduction Projoct (0704-0188), Washington, DC 20603.

REPORT TYPE AND DATES COVERED 1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

March 2000 Master's Thesis
4. TITLE AND SUBTITLE

DISTRIBUTED OBJECT SYSTEM ENGINEERING FOR TERMINAL
AERODROME FORECAST VALIDATION AND METRICS PROCESSING

6. AUTHOR(S)
James S. Douglas, Captain, USAF

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Air Force Institute of Technology
Graduate School of Engineering and Management (AFJT7EN)
2950 P Street, Building
640 WPAFB OH 45433-7765

8. PERFORMING ORGANIZATION
REPORT NUMBER

AFrT/GCS/ENG/OOM-07

9. SPONSORING/MONITORING AGENCY NAMEIS) AND ADDRESS(ES)
Mr. George Coleman, GM-14, Acting Director, Plans and Programs Directorate
HQ AFWA/XP
106 Peacekeeper Drive
Offutt AFB, NE 68113-4039 DSN 271-3585

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

Dr. Gary B. Lamont, ENG, DSN: 785-3636, ext. 4718 COMM: (937) 255-3636 ext. 4718

12a. DISTRIBUTION AVAILABILITY STATEMENT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)
Distributed object systems are a very complex intertwining of heterogeneous hardware, software, and operating systems
coupled with communication networks of varying protocols and capacities. Distributed components offer improved
performance through parallel processing, improved expansion and scalability opportunities through modularity, improved
availability through replication, and improved resource sharing and interoperability through interconnection. This research
provides a distributed system design methodology to validate terminal forecasts and gather metrics for the Air Force Weather
Agency. Proven principles such as component reuse and architectural development are applied through the use of
parameterized types and design patterns. A client/server measurement model is developed to show the impact of design
decisions on computer resource utilization, system scalability, system performance, ease of implementation, and system
evolution. An experimental Common Object Request Broker Architecture (CORBA) application is implemented to quantify
the approach's effectiveness toward selecting an appropriate CORBA implementation and deploying the application in a
distributed environment. While this research specifically uses CORBA for system development, the methodology presented is
easily mapped onto any client/server architecture.

15. NUMBER OF PAGES

198
14. SUBJECT TERMS

Software Engineering, Distributed Objects, Components, Scalability, Efficiency, Threads,
Tasks, CORBA, Performance Benchmarks 16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL
Standard Form 298 (Rev. 2-89) (EG)
Prescribed by ANSI Std. 239.18
Designed using Perform Pro, WHS/DIOR, Oct 94

